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Chapter 1

Introduction

The modern concept of the atom began to take form at the end of the 18th century and early 19th century
with the Law of Definite Proportions, proposed by J. L. Proust, followed shortly thereafter by John Dalton’s
focus on relative masses, which lead to the Rule of Greatest Simplicity and the Law of Multiple Proportions.
These propositions were supplemented in the 19th century by the Law of Combining (Gas) Volumes and
Avogadro’s hypothesis of the equality of molecule counts in equal volumes of gases at equal temperature and
pressure. With Faraday’s Law of Electrolysis, the calculation of chemical reactions that followed from the
earlier developments was verified, and the stage was set for Mendeléev and Meyer’s synthesis of the Periodic
Table of Elements.

These developments remained for the most part guided by the ancient notion that atoms were the
ultimate, indivisible, elementary objects of which everything is composed. The multitude and periodicity of
the elements made this expectation unlikely, and, of course, we now know that that atoms are composed of
electrons and a nucleus. The nucleus is in turn composed of nucleons, which themselves are composed of
quarks.

It is these constituents and their interactions that we will study in this course. The decade 1895 -
1905 is often designated the first of modern physics due to the discoveries of X-rays, radioactivity, the
electron, the quantum nature of electromagnetic waves and sub-atomic particles, and special relativity.
These discoveries and the phenomena themselves are all somehow related to electromagnetism, and so the
importance of reviewing this topic. The history of this period, and of subatomic physics since, is fascinating
and informative, but diverts time and attention from the study of our present state of knowledge, the focus
of this course. Readings are provided for the curious, but even–or maybe especially–the non-curious are
encouraged to peruse them.

When one considers the full history of our quest to understand what, fundamentally, everything is made
of, our current notion of fundamental constituents as both chunks separated, relative to the size scale of these
chunks, by enormous voids, and waves, which, in principle, spread out through all of space–such notions are
quite astonishing individually, but even more so conjoined as they are. We shall call these conjoined objects
subatomic entities.

What may not be so suprising, at least to some, is that each type of subatomic entity–and there aren’t so
many different fundamental types–is identically duplicated. The uncountable 12C atoms are intrinsically in-
distinguishable, as are electrons, protons, neutrons, and so forth. Fortunately for us, such indistinguishability
simplifies the development of the physics, as there is less to explain.

We are also helped by the fact that the number of ways these entities interact is small. On the other

1



2 CHAPTER 1. INTRODUCTION

hand, there are no direct means to observe these interactions. All we know about them derives from three
indirect techniques:

1. measuring properties of joined or bound entities (spectroscopy)

2. observing what happens when one entity scatters off another

3. examining natural, spontaneous transformations of entities

1.1 Observables

Different techniques measure some of the same observables. Many of the oberservables regardless of technique
are related. Both of these sets of redundancies are obviously good things.

1.1.1 Spectroscopy

1. energy spectrum

2. lifetime, τ

3. mass

4. width, Γ

5. transformation outcomes

6. magnetic moments

The natural width is inversely related to the lifetime, Γ = ℏ/τ . The total width is the sum of all
transformation widths (final states). The lifetime, mass, and width are related by the mass distribution of
bound-state resonances through the (relativistic) Breit-Wigner probability distribution c = ℏ = 1:

P (E) =
k

(E2 −M2)2 −M2Γ2
(1.1)

where E is the center-of-mass energy of the constituents, and

k =
2
√
2MΓγ

π
√
M2 + γ

(1.2)

and

γ =
√
M2(M2 + Γ2) (1.3)
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Figure 1.1: A Breit-Wigner distribution, here of the probability that the given center-of-mass energy produces
the resonance. The full-width of the resonance distribution at half its maximum probability (p/2) is directly
related to the width, and therefore the lifetime, of the resonance: FWHM = Γ/2− (−Γ/2) = Γ

1.1.2 Scattering

1. Total cross section

2. Partial cross section

A cross section is the effective area (for interaction) presented by a target entity.
In subatomic physics, scattering events involve projectiles whose relative velocities, v

c ≫ 0, and the sizes
of the objects involved, ∼ 1 fm, 10−15 m, means a typical reaction time interval ∆t ≲ 10−23 s. This also
implies a 2-body scatter process in which the scattered object is free before and after the interaction.

Assuming only a small number of interactions will occur in one pass (thin target), then the number of
interactions, Ni is proportional to

1. the number of incident (beam) entities, Nb

2. the numerical density (number/unit volume) of target entities, nt

3. the “sheet” thickness, z

Ni = σNbntz (1.4)

The product Nbntz is sometimes referred to as the luminosity, L. The proportionality constant, σ, gives the
probability of an interaction given the beam and target characteristics. Its units are area.

σ =
Number of interactions

Number of incident entities×Number of target entities per unit volume× thickness
(1.5)

This is known as the total cross section, a somewhat ambiguous term. It can be comprised of the sums
of cross-sections for different types of interactions between the same species of incident and target entities,
for example σelastic, σinelastic, and σelectron production, etc. It can also refer to the integral over all scattering
angles, which leads to the concept of differential cross-section, dσ

dΩ , where dΩ = sin θdθdϕ, the infinitesimal

element of the solid angle, which, when measured, is equal to dA
r2 , a differential area at some distance r from

the target. Then
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σ =

∫
dσ

dΩ
dΩ (1.6)

Figure 1.2: Differential cross section, dσ and solid angle, dΩ.

Let’s get an intuitive sense of this latter meaning by considering, classically, the scattering of a point
particle by a hard sphere.

Figure 1.3: A point particle scattering at angle θ off a hard sphere of radius R.

Scattering angle: θ = π − 2α

Impact parameter: b = R sinα

Therefore:

b = R sin
[
1
2 (π − θ)

]
= R cos

(
θ
2

)

Figure 1.4: Impact parameter, b, and azimuthal angle, ϕ, contributions to the differential cross section, dσ.
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The contributions to the total cross section from different impact parameters and azimuthal angles [see
Figure 1.4]:

dσ = −bdbdϕ

= −b db
dθ
dθdϕ

=
1

2
R2 cos

(
θ

2

)
sin

(
θ

2

)
dθdϕ

=
1

4
R2 sin θdθdϕ

=
1

4
R2dΩ

⇒ dσ

dΩ
=
R2

4

which, integrated over all angles gives the total cross section:

σ = πR2

the cross-sectional area of the hard sphere.

1.1.3 Transformations (decays)

1. Lifetime

2. Transformation rates

3. Branching ratios

If the decay rate, or probability per unit time of a transformation is Γ. If there are N(ti) entities at time
ti, then N(ti)Γdt is the number that transform in interval dt, reducing the number of original entities by
dN . Thus, in general:

dN = −N(t)Γdt (1.7)

where the negative sign indicates that the number is decreasing.
Integrating

N(t) = N(t0)e
−Γt (1.8)

for some arbitrary initial time, t0.
The mean lifetime is the inverse of the decay rate:

τ =
1

Γ
(1.9)

Most entities transform in a number of different ways, referred to as channels or modes, and each channel
is characterized by a different rate, Γi, say. Then the total decay rate is the sum of all partial decay rates:
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Γtotal =
∑
i

Γi (1.10)

The mean lifetime of the entity, accounting for all channels, is, then:

τ =
1

Γtotal
(1.11)

What is typically measured are branching ratios or branching fractions, BR, the fraction of transforma-
tions into each mode. If the fraction to all modes can be measured, they will sum to 1.

Branching fractions can be related to decay rates, which are what is calculated from theory.

BRi =
Γi

Γtotal
(1.12)

1.2 Modeling Interactions

Scientific understanding evolves as results of investigations are compared to predictions of a pre-conceived
model or from constructing a model that accounts for the results of investigations while, in turn, predicting
the outcome(s) of further investigations.

In physics, mathematical models of mechanical and electromagnetic interactions are second-order differ-
ential equations. Presumably, interactions between subatomic entities will include mechanical and electro-
magnetic processes, and so we should look for one or more differential equations.

Chunks (objects composed of “matter”) have well-defined energy E and momentum p, which are related
by

E =
p2

2m
+ V (1.13)

where V is a potential, which can depend on position and time, representing the interaction. In the case of
a constant potential, which can be defined as zero, energy and momentum will be conserved. The chunk is
what is called a free particle. The wave associated with a free particle can be represented by a sinusoidal
function that also depends on time and position in, say, one dimension,

Ψ(x, t) = cos 2π
(x
λ
− νt

)
+ γ sin 2π

(x
λ
− νt

)
(1.14)

where λ is the wavelength, ν is the frequency of the wave, and γ is a constant to be determined. The
final equation of motion has to be linear in this function to ensure that when different such functions add
together they produce constructive and destructive interferences. In short, there can be no constant terms
or quadratic or higher powers of Ψ.

Chunk parameters (energy and momentum) must somehow relate to to the wave parameters (wavelength
and frequency). The de Broglie and Einstein postulates do this:

p =
h

λ
(1.15)

E = hν (1.16)

Combining these with Equation 1.13,
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h2

2mλ2
+ V (x, t) = hν (1.17)

The wavenumber k = 2π/λ, the angular velocity ω = 2πν, and the reduced Planck’s constant ℏ = h
2π .

ℏ2k2

2m
+ V (x, t) = ℏω (1.18)

and, from Equation 1.14

Ψ(x, t) = cos (kx− ωt) + γ sin (kx− ωt) (1.19)

The factors of k2 and ω in Equation 1.18 suggest Equation 1.19 could be related to it by taking a second
derivative with respect to position and a first derivative with respect to time:

α
∂2Ψ(x, t)

∂x2
+ V (x, t)Ψ(x, t) = β

∂Ψ(x, t)

∂t
(1.20)

where α and β are constants, like γ, to be determined. This equation yields, gathering terms

[−αk2 + V (x, t) + βωγ] cos (kx− ωt) + [−αγk2 + γV (x, t)− βω] sin (kx− ωt) = 0 (1.21)

There are now three equations for the three unknown constants, α, β, and γ.

ℏ2k2

2m
+ V (x, t) = ℏω (1.22a)

−αk2 + V (x, t) = −βωγ (1.22b)

−αγk2 + γV (x, t) = βω (1.22c)

Dividing Equation 1.22c by Equation 1.22b gives γ = − 1
γ ⇒ γ2 = −1 or γ = ±i. Plugging this into

Equation 1.22b gives −αk2 + V (x, t) = ∓iβω and comparing to Equation 1.22a allows us to conclude that

α = − ℏ2

2m and β = ±iℏ. Choosing the plus sign by convention (it makes no physical difference), we get for
our differential equation

− ℏ2

2m

∂2Ψ(x, t)

∂x2
+ V (x, t)Ψ(x, t) = iℏ

∂Ψ(x, t)

∂t
(1.23)

This, of course, is Schrödinger’s equation, which implies that the model building and testing of interactions
among subatomic entities has to be guided by general principles in quantum mechanics. This is a direct
consequence of the manifestly dual wave and particle natures of these entities.

Equation 1.13 is the low-velocity, non-relativistic form of the total energy. That it served as a premise for
our plausibility argument means that Equation 1.23 is a low-velocity, non-relativisitic form for describing the
behavior from an interaction defined by the potenial V . While atomic physics and (some) nuclear physics,
both amalgamations of subatomic entities, can be described quantum mechanically without special relativity,
particle physics, the physics of the interactions of the entities themselves, usually requires creating models of
these interactions within the context of quantum field theory (QFT, a topic primarily for another course, but
whose essential ideas are necessary in this course), a merging of special relativity and quantum mechanics.
This merger requires replacing the non-relativistic total energy, Equation 1.13, with the relativistic form:
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E =
√
c2ps +m2c4 + V (1.24)

This would give a relativistic formalism for a single subatomic (quantum mechanical) entity, an approach
known as relativistic quantum mechanics. It explains, for example, the Pauli exclusion principle that, among
othe things, accounts for the electronic structure of atoms.

Quantum field theory is a broader conception of interactions, in that it includes any number of entities
and (quantized) fields. In its present state of development, QFT is not well-equipped to deal with bound
states. Its formalism is primarily designed to analyze interactions of infinitesimally small duration between
initally and finally free objects.

Non-relativistic quantum mechanics (Schröder’s equation) was designed to analyze subatomic bound
states, and is very good at it. It provides a formalism for addressing the indeterminacy of scattering
behavior, lifetimes, and transformation products, while quantum field theory provides one for addressing the
existence of “anti-chunks” and their similarities to and differences from chunks.

One consequence of special relativity is that so-called rest mass may not be conserved in an interaction,
even though energy and momentum are, and such is seen in the spontaneous transformations of some
subatomic entities. Furthermore, special relativity allows for massless chunks, which some subatomic entities
are.

1.2.1 Fields and Mediators

Classically, action-at-a-distance is conceptualized as objects interacting with one another due to the effect
of a potential or a field. In quantum field theory, interactions are viewed as exchanges of quanta (known as
mediating bosons) characteristic of the type of interaction. Macroscopically, such details are irrelevant.

Classical: F = Q2E(r) ∼ Q1Q2/r
2

QFT: Exchange of virtual photon with momentum q
But qr ∼ ℏ (Heisenberg’s uncertainty principle), and t = r/c, so dq/dt ∼ 1/r2. Assuming the number of
photons absorbed and emitted is directly related to charge gives the classical result.

Neither of these conceptualizations is directly observable. However, the quantization of propagating
electromagnetic fields as free photons justifies the notion of virtual photon exchange on the microscopic
scale. And, it works, as we’ll see.
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Visualizations of Interactions

Classical field lines:

(a) Radial field (b) Feld of two charges

Figure 1.5: Electric fields associated with point charges

(a) Uniform field (b) Magnetic quadrupole field

Figure 1.6: Representative electromagnetic field lines

QFT Feynman diagrams: In the convention used here, the only physical aspect of the diagram is time
flowing from left to right. No spatial information can be inferred from them.

Figure 1.7: QED primative or photoelectric effect
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Figure 1.8: Two-electron processes

Figure 1.9: Electromagnetic interactions with a nucleus
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1.3 Natural Dimensions and Units

As the typical nuclear radius is order 10−15 m, and the typical nuclear energy is in the 10−10 J range, SI
units are not convenient for subatomic physics, whose constituents are smaller with rest energies of roughly
the same magnitude . Instead, lengths are usually quoted in terms of femtometers or, equivalently, fermi,
1 fm = 10−15 m. Areas, or, more precisely, cross-sections are reported in terms of barns, 1 b = 10−28 m2.
Energies are referred to in terms of electron volts, 1 eV = 1.6× 10−19 J.

Mathematical expressions in subatomic physics, which exists in relativistic and quantum realms, are
repleat with the physical constants c and ℏ. It’s convenient to define them away by setting them both to
unity: c = ℏ ≡ 1. Now, kinematics depends on three independent parameters, which are typically identified

as length, time, and mass. Constraining c and ℏ, which are combinations of these, [c] = L
T , [ℏ] =

ML2

T , leaves
just one kinematical degree of freedom.

The experimental techniques of subatomic physics–measuring bound states, scattering, and transformations–
all involve projectiles, whose primary characterization is their energy. It’s therefore become natural in
subatomic physics to refer to everything in terms of units of energy. Setting c = ℏ ≡ 1 and choosing
the remaining kinematic parameter to be energy is therefore referred to by physicists engaged in sub-
atomic physics as working in natural dimensions. Since, in subatomic physics E =

√
p2c2 +m2c4, the

dimensions of momentum and mass are also energy. A plane wave solution to Schrödinger’s equation is
Ψ(x, t) = Cei(x/λ−νt) = Cei(px−Et)/ℏ, so the dimensions of length and time are 1/energy. Heisenberg’s
Uncertainty principles, ∆x∆p ≳ ℏ and ∆E∆t ≳ ℏ, lead to the same conclusions. In quantum mechanics,
the magnitude of the orbital angular momentum is L2 = l(l + 1)ℏ, which means that angular momentum,
like velocity, is dimensionless. Of course, this could also be seen by the classical relationship, L = r× p.

In SI units, Coulomb’s Law is

F =
1

4πε0

Q1Q2

r2
(1.25)

Since F = dp
dt and the dimension of momentum is energy and the dimension of time is 1/energy, the

dimension of force is energy2. Because the dimension of length is 1/energy, 1
r2 has the same dimension

as force. This implies that the ratio Q1Q2/ε0 is dimensionless. As c2 = 1
ε0µ0

= 1, it is convenient to set
ε0 = µ0 = 1 in natural units. Once that is done, electric charge is fixed to be dimensionless.

The fine structure constant,

α =
e2

4πε0ℏc
=

1

137
(1.26)

in all systems of units. This leads to e =
√

4π
137 = 0.303. That is, the charge of the proton is 0.303 in natural

units.

To summarize,
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Quantity Natural Dimension
mass Energy
length 1/Energy
time 1/Energy
energy Energy
momentum Energy
velocity none
angular momentum none
cross-section 1/Energy2

force Energy2

charge none

The natural unit of measurement is, again, the electronvolt 1 eV = 1.6× 10−19 J. Notice, [ℏ] = Energy
× Time and [c] = Length/Time. Thus to convert a quantity in Natural Units into, say, SI units, insert
the appropriate ℏ or c or ℏc. So, mSI = mNU/c

2, pSI = pNU/c, σSI = σNU × (ℏc)2, tSI = tNU × ℏ, and
ΓSI = ΓNU/ℏ.

Here’s a list of some conversion factors in ranges appropriate for subatomic physics (1 GeV = 1.6×10−10

J):
Quantity Typical Natural Unit Conversion
ℏ 1 6.6× 10−25 GeV-s
c 1 3× 108 m/s
ℏc 1 2× 10−16 Gev-m
Energy 1 GeV 109 eV = 1.6× 10−10 J
Mass 1 GeV 1.8× 10−27 kg
Momentum 1 GeV 5.3× 10−19 kg-m/s
Length 1 GeV−1 2× 10−16 m
Cross Section 1 GeV−2 4× 10−32 m2 = 0.4 mb
Time 1 GeV−1 6.6× 10−25 s
Decay Rate 1 GeV 1.5× 1024 s−1



Chapter 2

Interactions with Matter

2.1 Introduction

All methods of detection in nuclear and particle physics depend on the interactions of charged particles and
electromagnetic radiation with bulk matter. Directly or indirectly, the particles or radiation transfer energy
to this matter as they traverse it, exciting or ionizing the constituent atoms.

2.2 Charged Particle Ionization Loss

The average energy per unit density and unit distance transferred to the bulk as a result of ionization by the
traversal of a fast moving charged particle of mass M ≫ m, the mass of an electron, is given by the (Hans)
Bethe formula,

−
〈
dE

dx

〉
ion

=
4πz2α2NA

mβ2

Z

A

[
ln

(
2β2γ2m

I

)
− β2

]
(2.1)

where β and z are the velocity and charge per proton charge of the incident particle (assumed to be spinless
in this approximation), NA is the Avogadro constant, Z, A, and I are the atomic number, mass number,
and mean excitation potential, respectivley, of the bulk, and m is the electron’s mass. The magnitude of
I ≈ 10Z eV.

Note that

1. dE
dx = z2f(β), independent of M

2. For a given z: dE
dx ∝ 1

v2 for β ≪ 1;
(
dE
dx

)
min

at βγ ≈ 3; dE
dx ∝ ln γ2 for β → 1.

3. Since the dependence on I is logarithmic and Z
A ≈ 0.5 for all but hydrogen and large A matter, dE

dx
depends only weakly on the bulk.

Note also that in principle the interaction could be with protons rather than electrons, but then dE/dx ∝
1/mp instead of 1/me, and the energy loss would be 2000 times smaller.

13
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Figure 2.1: Bethe curve for several different elements as a function of βγ = p/Mc and incident particle
(muon, pion, proton) momentum, p

The effect of the traversing particle’s spin is negligible. The dE/dx losses of a traversing electron are
smaller by a few percent than Equation 2.1 would indicate, but additional radiation losses are a much more
important effect.

The so-called relativistic rise of Equation 2.1 is due in part to knock-on effects of so-called δ-rays–highly
energetic ionized electrons–causing additional ionization, and in part to relativistic effects on the electric
field when transforming into the lab frame: the transverse component is proportional to γ, so it grows as γ
grows, increasing the number and magnitude of more distant (transverse) collisions, until, at around γ = 10
where the effect reaches interatomic distances, polarization in the dielectric begins to shield against the field,
and the curve flattens out.

Equation 2.1 is the average energy loss dE in a layer dx of matter, but this average will be subject to large
fluctuations to the high loss side. The asymmetric distribution about the mean is described by a Landau
distribution.

Figure 2.2: Landau distribution (shape)

Disgarding outliers, then, energy loss measurements of many layers can lead to a few percent deter-
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mination of the mean energy loss, from which γ, and therefore β, can be estimated. With these and an
independent measurement of the momentum, the particle mass, and therefore its species, can be determined.

2.3 Ionization Loss and Range

(Kinetic) energy loss implies that a traversing particle can range out in the bulk:

R =

∫ K

0

dE

dE/dx
(2.2)

While the non-relativistic, 1
v2 ∝ E−1 dependence of dE/dxion might suggest R ∝ K2, empirically, for

mid-A matter and 0.1 < β < 0.7,

R ∝ K1.75 (2.3)

This relationship is subject to the same fluctuations as the average (dE/dx)ion, which, in this case is known
as straggling. With an independent momentum measurement and the range-determined energy, the mass,
and therefore the species, of a particle can be identified.

2.4 Cerenkov Radiation

Cerenkov radiation is related to the polarization limitation on the relativistic increase of dE/dx: part of this
limitation is due to Cerenkov radiation, which occurs whenever a particle’s β > 1

n , where n is the index of
refraction of the matter.

Figure 2.3: Cerenkov radiation

The radiation from atoms excited along the path of a trajectory form a coherent wavefront at a certain
angle relative to that trajectory,

cos θ =
t/n

βt
=

1

βn
(2.4)
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in time t. The radiation will of course form a continuous spectrum. As the index of refraction is wavelength-
dependent in a dispersive medium, θ, too, will vary with wavelength.

By the appropriate choice of photon detector, this effect can be exploited to measure velocities for β → 1
and thereby differentiate among highly energetic particles with different velocities, given an independent
momentum measurement.

2.5 Scattering

Recall that the likelihood of a projectile scattering off a second object is related to the effective collision
area, called a cross section, σ, which in nuclear and particle physics is measured in units called barns, 1 b
= 10−28 m2. For a circular target,

σ = πr2 (2.5)

or the area of a circle with radius r.

The cross section for scattering (that is, the effective collision area) of a beam of particles off a tiny
target, in which the cross-sectional area of the beam is much larger than the cross-sectional area of the
target, may have a statistical interpretation. If the scattering is due, for example, to a central, inverse-
square interaction, such as the gravitational or Coulomb interaction, that is, of the form − k

r2 , where k
is a parameter characterizing the interaction,1 there is an inverse relation between the magnitudes of the
scattering angle and the impact parameter, b, the perpendicular distance from the target to the trajectory
of a beam particle if it weren’t scattered, and, hence, the radius of the effective collision area.

Figure 2.4: Coulomb scattering

The trajectory of a projectile repelled by a conservative central force is hypberbolic. The incoming
momentum is p⃗i, and the outgoing momentum is p⃗f ; ∆p⃗ = p⃗f − p⃗i. b is the impact parameter; r⃗ is
the position vector of the projectile relative to the center of the much more massive target; rmin is the
position of closest approach; and θ is the scattering angle. r⃗ sweeps out an angle, ϕ relative to rmin:
− 1

2 (π − θ) ≤ ϕi ≤ 0 ≤ ϕf ≤ 1
2 (π − θ).

1With this notation, the interaction is assumed to be attractive, as, for example, the gravitational interaction, where
k = GMm, while for an Coulomb interaction k = −kq1q2.
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Figure 2.5: Definition of impact parameter

Figure 2.6: Parameters of collisions

2.5.1 Elastic Collisions without Contact

A central, inverse-square interaction (that is, a potential of the form k/r) is conservative (energy transforma-
tions do not depend on trajectory). It is elastic if the particle’s mechanical energy and angular momentum
are unchanged:

E = K − k

r
= constant (2.6)

L = Iϕ̇ = constant (2.7)

where, here, r is the distance of the particle from a fixed reference point, and for a single particle of mass
m, K = 1

2mv
2
r is the particle’s kinetic energy at radial distance r from the fixed point, and I = mr2 is its

moment of inertia relative to the fixed point. We consider for the moment only non-relativistic motion.
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Consider the case where the projectile mass m≪M , the target mass (otherwise, use reduced mass). Let

r⃗ be the position vector of m relative to M , so m’s radial velocity at any instant is ⃗̇r.
The (radial) equation of motion of m is, then,

− k

r2
= mr̈ −mrϕ̇2 (2.8)

Since, from Equation 2.7, ṙ = dr
dt = dr

dϕ
dϕ
dt = dr

dϕ
L
I ,

r̈ =
dṙ

dt
=
d(dr/dϕ)

dϕ

(
dϕ

dt

)2

− dr

dϕ

2L

Ir

dr

dt
=
d2r

dϕ2

(
L

I

)2

− 2

r

(
dr

dϕ

)2(
L

I

)2

so, substituting the expression for the moment of inertia of a single particle, I = mr2,

r̈ =
L

m2r4

[
d2r

dϕ2
− 2

r

(
dr

dϕ

)2
]

(2.9)

Plugging Equation 2.9 into Equation 2.8 and rearranging,

−mk
L2

= −1

r
+

1

r2
d2r

dϕ2
− 2

r3

(
dr

dϕ

)2

(2.10)

On substituting u ≡ 1
r ,which implies that dr

dθ = − 1
u2

du
dθ and d2r

dθ2 =
(

2
u3

) (
du
dθ

)2 −
(

1
u2

)
d2u
dθ2 , Equation 2.10

simplifies to

d2u

dθ2
+ u =

mk

L2
(2.11)

The general solution to Equation 2.11 is

u =
1

r
= A sinϕ+B cosϕ+

mk

L2
(2.12)

Initial and boundary conditions determine the coefficients of the trigonometric terms. Energy and mo-
mentum conservation require that the line through the distance of closest approach rmin be an axis of
symmetry of the motion. This line is at ϕ = 0, at which |r⃗| = rmin and ⃗̇r = 0. The first condition implies
that B = 1

rmin
− mk

L2 . Since, taking the time derivative of Equation 2.12 and inserting ϕ = 0, − 1
rmin

ṙ = Aϕ̇,
the second condition implies A = 0. Thus,

1

r
=

(
1

rmin
− mk

L2

)
cosϕ+

mk

L2

or, finally,

r =
L2/mk

1 + (L2/mkrmin − 1) cosϕ
(2.13)

or, since E = L2

2mr2min
− k

rmin
,

r =
2rmin(1 + Ermin/k)

1 + (2Ermin/k + 1) cosϕ
(2.14)
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Each is an equation in polar coordinates of a conic section with eccentricity e = L2/mkrmin − 1 =

2Ermin/k + 1. If e = 0, m circles about M with a constant radius of
∣∣∣ L2

mk

∣∣∣ = ∣∣ k
2E

∣∣. If 0 < e < 1, m revolves

around M in an ellipse with semi-major axis

a =

∣∣∣∣ mkr2min

2kmrmin − L2

∣∣∣∣ = ∣∣∣∣ k2E
∣∣∣∣ (2.15)

and semi-minor axis (not to be confused with the impact parameter)

b =
Lrmin√

|2mkrmin − L2|
= rmin

√
|1 + k/(Ermin)| (2.16)

2.5.2 Scattering in Two- and Three-Dimensions

If e > 1, m’s trajectory is hyperbolic, withM at the focus. This is the motion of scattering. If the scattering
is repulsive, then k < 0. if attractive, k > 0, and the bend is in the opposite direction.

The parameters of interest in the physical condition of scattering are typically the incident (and outgoing)
kinetic energy, Ki = Kf ≡ K, the impact parameter, b, and the scattering angle, θ rather than L (or E),
rmin, and ϕ.

Figure 2.7: Scattering parameters

In terms of these parameters, Equation 2.12 is reevaluated with the initial condition at r⃗ = −∞,2: u = 0
and ϕ = 0, increasing to π − θ when r = ∞. Also, ṙ±∞ = v±∞ =

√
2K/m.

Note also that the momentum |p⃗i| = |p⃗f | ≡ p =
√
2mK, and L = Iϕ̇ = r⃗ × p⃗ = r⊥p = b

√
2mK, so

ϕ̇ = b
√
2mK
I .

Then, from Equation 2.12,

B = −mk
L2

= − mk

2mKb2
= − k

2Kb2
(2.17)

2With respect to the size of M , a beam particle approaches from, and receeds, very far away.
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and, because u̇ = − 1
r2 ṙ = (A cosϕ−B sinϕ)ϕ̇

− 1

r2

√
2K

m
= Aϕ̇ = A

b
√
2mK

I

A = −1

b

I

mr2
= −1

b

so that

1

r
= −1

b
sinϕ+

k

2Kb2
(1− cosϕ) (2.18)

At |r⃗| = +∞|, 1
r = 0 and ϕ = π − θ, so Equation 2.18 becomes

0 = −1

b
sin θ − k

2Kb2
(1 + cos θ) (2.19)

and, therefore, because sin θ =
√
1− cos2 θ =

√
(1 + cos θ)(1− cos θ),

b =

∣∣∣∣ k2K
∣∣∣∣
√

1 + cos θ

1− cos θ
=

∣∣∣∣ k2K
∣∣∣∣ cot θ2 (2.20)

where the last result uses half-angle formulae.
Recalling the distribution of the cotangent function, we see the inverse relationship between impact

parameter and scattering angle: larger scattering angles occur at smaller impact parameters.

Figure 2.8: The cotangent function

Because any beam particle arriving closer than b will scatter with an angle larger than a particle arriving
with impact parameter b, the circle with radius b gives the total cross section for particles with kinetic energy
K to scatter at angles larger than the angle associated with b given by Equation 2.20 [see Equation 2.5]:

σ = πb2 = π

(
k

2K

)2
1 + cos θ

1− cos θ
(2.21)
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The expected number of particles scattering at angles larger than that associated with a certain impact
parameter depends on the number of beam particles and the number of targets.

Assume the targets are situated in a crystal lattice of a pure substance, an element with atomic mass
number A, the number of nucleons in an atom of the element, but also the mass in grams of one mole of
these atoms. Then, the ratio of Avogadro’s constant, NA = 6.022 × 1023 mol−1, to A, yields the number
of such atoms per gram. Multiplying by the density of targets, ρ, gives the number per unit volume, n, of
these atoms:

n =
ρNA

A
(2.22)

Multipling n by the product of the thickness of the target crystal lattice, t, with the cross section, σ,
yields the number of targets within a radius of the respective impact parameter, that is, the fraction of beam
particles that would scatter. Multiplying this by the rate of incident beam particles, Ri, gives the scattering
rate Rs:

Rs =
ρNAtσ

A
Ri =

πρNAt

A

(
k

2K

)2
1 + cos θ

1− cos θ
Ri (2.23)

Because detectors have finite coverage, the rate of scatters into a finite angular band is usually the
measured quantity in an experiment. The expected rate is calculated not with the total cross section σ, but
with the so-called differential (scattering) cross section, dσ

dΩ , where Ω is the solid angle. The differential cross
section is the fraction of beam particles scattered into the solid angle band of size dΩ.

For a sphere of radius r,

Ω =
A

r2
(2.24)

where A now is the area of the sphere’s surface. The differential area, dA = r2 sin θdθdϕ, is that portion of
the sphere’s surface subtended by a differential polar (here, scattering) angle, dθ, and a differential azimuthal
angle dϕ. Then, the (always positive) differential solid angle is

dΩ = | sin θ dθ dϕ| (2.25)

For a beam particle with kinetic energy K to scatter at an angle between θ and θ − dθ, it must have
an impact parameter between b and b + db (recall the inverse relationship between the magnitudes of the
impact parameter and respective scattering angle).

dσ = |b db dϕ| (2.26)

But it is also true that

dσ =
dσ

dΩ
dΩ =

dσ

dΩ
| sin θ dθ dϕ| (2.27)

so the differential cross section is

dσ

dΩ
=

b

sin θ

∣∣∣∣dbdθ
∣∣∣∣ (2.28)

From Equation 2.20,
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Figure 2.9: Definition of solid angle

Figure 2.10: 3-D Differential Cross Section

∣∣∣∣dbdθ
∣∣∣∣ = ∣∣∣∣ k4K

∣∣∣∣ csc2 θ2 (2.29)

so, because sin θ = 2 sin θ
2 cos

θ
2 , Equation 2.28 becomes

dσ

dΩ
=

(
k

4K

)2
1

sin4 θ
2

=

(
k

8K

)2
1

(1− cos θ)2
(2.30)

This is the fraction of incident beam particles scattered in the direction between θ and θ− dθ and ϕ and
ϕ+ dϕ per unit solid angle per unit time.

The estimated rate of scattered particles into a detector depends on the rate of incident beam particles
[see Equation 2.23], the nature (composition and thickness) of the target, and the dimensions (cross-sectional
area) of the detector and its distance from the target.
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Figure 2.11: Differential cross section

2.6 Multiple Coulomb Scattering

As we’ve seen, the energy a charged particle traversing a medium loses due to electromagnetic interactions
is inversely proportional to the mass of the electrons and protons with which it interacts. While the loss
is therefore much larger to electrons than protons, the greater mass of the protons results in significantly
greater scattering, as described by Equation 2.30.

As that equation shows, the cross section is large for small scatters, the result being that in traversing a
layer of matter of thickness t, a particle is likely to undergo numerous small deviations, each one independent
of its predecesors. The scattering angle distribution of these multiple scatters is approximately Gaussian

P (ϕ)dϕ =
2ϕ

⟨ϕ2⟩
exp

(
−ϕ2

⟨ϕ2⟩

)
dϕ (2.31)

where ϕ is the scatter angle in 3-space (ϕ/
√
2 is the projection onto a plane normal to the trajectory), and

⟨ϕ2⟩ is the mean square of that angle, which can be calculated approximately

⟨ϕ2⟩ ≈ z2
(
Es

βp

)2
t

X0
(2.32)

where

Es =

√
4π

α
me ≈ 21 MeV (2.33)

and X0 is the radiation length, found in tables, but

1

X0
=

4Z(Z + 1)α

m2
ln

(
183

Z1/3

)
(2.34)

Thus, a singly-charged particle, z = 1, undergoes an rms deflection of ⟨ϕ2⟩1/2 21
βp radians traversing one

radiation length (p in MeV).
Note that scattering is not really normally distributed, because of the non-zero cross-section for large-

angle deflections, which obey Equation 2.30 and add long tails to the distribution.
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2.7 Bremsstrahlung

Electrons traversing matter lose energy not just from ionization, but also from radiation. In fact, for energies
above a few MeV, radiation loss, known as bremsstrahlung (braking radiation), becomes the dominant mode.
It is principally due to interactions with nuclei, rather than with other electrons.

The nuclear electric field transfers energy to or from (accelerates) the traversing electron, and, while some
of that energy manifests in the changes to the electron’s (and, in fact, though often barely manifest, to the
nucleus’) kinetic energy, much of it is radiated as a continuous spectrum cut off by the electron’s energy.

The spectrum is roughly inversely related to the energy, and the loss per unit thickness dx is given by(
dE

dx

)
rad

= − E

X0
(2.35)

where, again X0 is the radiation length. Note that this says that radiation loss is proportional to E, while
Equation 2.1 says that ionization energy loss is independent of energy. Comparing the two equations gives
the cross-over energy:

Ec ≈
600

Z
MeV (2.36)

Integrating over the thickness gives the average energy lost

⟨E⟩ = E0 exp

(
− t

X0

)
(2.37)

where E0 is the electron’s initial energy. This is actually the standard way of determining radiation lengths:
measuring the thickness at which the energy is reduces by a factor e.

The effect can also be pictured as a sort of quantum field theory process.

Figure 2.12: “Field-theory” representation of bremsstrahlung

Viewed from the traversing electron’s rest frame, the charged nucleus approaches the stationary electron.
The transverse component of the nuclear electric field, E⊥, increases as γ, and it will be accompanied by a
transverse magnetic field B⊥ = βE⊥ ≈ E⊥. From the viewpoint of the electron, an electromagnetic pulse–
that is, a stream of virtual photons–from the nucleus approaches at velocity β. It may then scatter one of
the photons, via the Compton effect, into a real state, losing energy in the process.
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2.8 Photon Absorption

Three physical phenomena are primarily responsible for matter’s absorption of γ-rays:

1. photoelectric effect

2. Compton scattering

3. pair production

Both the photoelectric effect and pair production result in total absorption; Compton scattering results
in energy loss.

Figure 2.13: Competing processes of photon absorption as a function of photon energy

For photons of energy E traversing matter with atomic number Z, the photoelectric cross section varies
as Z4/E3; the Compton scattering cross section varies as Z/E; and the pair-production cross section, just
above the 2me = 1 MeV threshold, varies as Z2E, but flattens out to become approximately independent
of energy at E > 1 GeV. Note that the photoelectric cross section exhibits discontinuities at the binding
energies of each element’s electron shell.

So different absorption processes dominate at different energies in different materials.

Figure 2.14: Energy and atomic number dependence of photon absorption process dominance

Like other absorption effects, pair production attenuates exponentially with depth. If I0 is the intensity
of a beam of high-energy photons,
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I = I0 exp

(
− 7t

9X0

)
(2.38)

The distance 9
7X0 is referred to as the conversion length.

2.9 Electromagnetic Showers

The combination of bremsstrahlung of high energy electrons and pair production of high energy photons
results in cascade showers, in which an electron radiates photons which pair produce leading to annihilation or
bremsstrahlung resulting in additional photons. And so on. The number of particles increases exponentially
in the material.

Ignoring other effects, including those we’ve already discussed, we can imagine in a simplified way that
the number of particles doubles, and the energy per particle halves, each radiation length, so that after n
radiation lengths, there will be N = 2n particles each with energy E(n) = E(0)/2n. We assume further that
at Ec, radiation loss ceases and ionization loss completely takes over. In other words, the shower will cease
developing at depth

nmax =
ln (E(0)/Ec)

ln 2
(2.39)

where the shower size (in terms of numbers) will be

Nmax = enmax ln 2 =
E0

Ec
(2.40)

This will also approximately be the length of the shower in units of radiation lengths:

ℓ ≈
∫ nmax

0

Ndn =

∫ nmax

0

2ndn =
2nmax − 1

ln 2
≈ E0

Ec
(2.41)

The number of particles with energies greater than E:

N(> E) =

∫ n(E)

0

Ndn =

∫ n(E)

0

en ln 2dn ≈ en(E) ln 2

ln 2
=
E(0)/E

ln 2
(2.42)

Thus, the differential energy spectrum of particles is

dN

dE
∝ 1

E2
(2.43)

In sum, the maximum track depth increase logarithmically with initial energy, the number of shower
particles at the maximum is proportional to the initial energy, as is the total track length integral. Thus,
it is possible to determine the energy of high energy photons and electrons by measuring any or all of these
quantities.



Chapter 3

Accelerators

3.1 Introduction

Creating bound states and unstable particles and studying the structure of objects through scattering requires
projectiles, which are characterized by energy

E =

{
K +m

2π
λ

(3.1)

in terms of “matter” or wave.
Naturally occurring projectiles are produced in radioactive decays and by cosmic sources, but these

have limited intensity, lack energy tunability, and are, by nature, stochastic. Investigation requires control.
“Artificial” sources–accelerators and beam transport systems–provide this.

Providing projectiles for an experiment involves

1. Isolating a species of projectile

2. Accelerating ensembles of these projectiles

3. Steering and delivering the projectiles to the experiment

3.1.1 Beam or Accelerator Physics

The study of, and the development of technology associated with, isolating desired projectiles (usually
some species of charged particle), collecting them into ensembles occupying similar phase-space (position
and momentum) coordinates, and interacting them with electromagnetic fields, is the domain of beam or
accelerator physics. On occasion, additional parameters, such as mass, charge, or spin, may be included.

Ensembles whose constituents share these mechanical parameters are referred to as beams. Controlling
such a beam typically implies conserving this constrained volume in phase space, referred to as the emittance.

A standard approach to studing and designing for beam ensembles is to identify a reference particle
against which to consider all other particles’ motion. Frequently, beam density is low enough to neglect
interactions between consituents, allowing for a simpler collective model. Violations of this assumption are
important concerns.

27
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The fields interacting with the ensemble are electromagnetic, so the motion is governed by the Lorentz
force

F = q(E+ v ×B) = FE + FB (3.2)

Since v ×B ⊥ v, FB does no work on the particle, and so increasing particle energies is done by FE .
On the other hand, since, as v ⇒ c, an electric field gradient of about 300 MV/m would be required to

bend the particle trajectories as much as would a 1-tesla magnetic field, and since a 1-tesla magnetic field is
commonplace, while 300 MV/m electric field gradients are not (yet) feasible,1 FB is more effective than FE

at steering trajectories.

3.2 Sources

3.2.1 Electrons

Quasi-free electrons are in abundance in metals, from which they can be extracted by various means and
formed into beams.

Electrons, normally emitted at low energy, are accelerated away from the cathode by an electric field,
but the resulting space charge reduces the field at the surface of the cathode. If the field falls to zero, no
further current can be can be drawn from the cathode. The current density at which the electric field goes
to zero is called the Child-Langmuir current limit, which, for a parallel-plate arrangement is,

JCL =
1

9π

√
2e

m

(
V 3/2

d2

)
(3.3)

where V is the voltage difference between anode and cathode, d is the distance between plates, and e and
m are the charge and mass of the electron.

Heating

The Fermi-Dirac distribution describes how electrons inside a (solid) metal are arranged in terms of energy
levels

n(E)dE ∝
√
E dE

1 + e(E−EF )/T
(3.4)

where EF the highest energy level filled at T = 0 K, and kB = 1 in natural units. Increasing the metal’s
temperature moves electrons to higher energy states, which may eventually exceed the metal’s work-function,
ϕw. The resulting current density of such extractable elections is given by the so-called Richardson-Dushman
equation,

J = AT 2e−eϕw/T (3.5)

The factor A is independent of the temperature, but is characteristic of the metal.
Thus, one chooses the working metal by optimizing A and work function such that the electron intensity

requirement is satisfied at a temperature below the metal’s melting point. Often, this involves coating a
metal with another metal or developing compounds.

High currents are possible, but the emission surface is large and the momenta are varied, leading to a
large emittance.

1The RF cavities of the LHC have electric field gradients of about 100 MV/m; plasma wakefield acceleration has achieved
gradients of about 200 MV/m, but hopes to reach 1 GV/m.
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Photoelectic effect

Electrons will be emitted from the surface of a metal or semi-conductor when it is impinged by a photon
whose energy exceeds the material’s workfunction.

Kmax = hν − ϕw (3.6)

Considering wavelengths to be measured in nanometers, the maximum photon wavelength leading to
emission is given by

λmax =
1240

ϕw
(3.7)

Actually, taking into account thermal effects, leading to electrons occupying levels above the Fermi energy,
low currents can be extracted with photons abovw this threshold.

Because metals tend to reflect as well as absorb photons, leading to low photoelectron production effi-
ciency, measured by what is known as the quantum efficiency Qe, the ratio of emitted electrons to incident
photons. Semiconductors are not as conductive or reflective, so, not only do few photons reflect off the
surface, but more penetrate well below the surface leading to much larger quantum efficiencies.

Again, the emittance of electrons from the photoelectric effect is large, due to large surfaces and wide
range of momenta.

Field Emission

A sharp metal needle in an electric field becomes an equipotential surface, and a very strong field is induced
at the tip (think of a lightening rod). With a strong enough potential difference between cathode and anode,
electrons can be pulled from the tip, emerging thus from a point with ratherly uniformly low momenta. This
can provide a low emittance beam, but tends to break down, limting current.

3.2.2 Ions

The great variety of ions that are accelerated demand many different approaches to their production, but
essentially all ion sources consist of two parts, a plasma generator and an extraction system. A plasma
generator provides ions to the extraction system, which selects the correct ions, rejects the wrong ones (as
well as electrons and neutral particles), shapes an ensemble of ions in terms of position and divergence angles,
and finally delivers it to the next stage of the accelerator.

Among the methods for producing plasmas include electrical discharges, heat, lasers, and even beams of
other particles. The key factor is that the plasma must be stable for long enough to extract the sort of beam
the application requires.

Bombarding surfaces with electrons, protons, or photons can extract ionized atoms from non-gaseous
materials. The ions can be drawn away with an electric field. The resulting current from this method is
usually small.

A common method for extracting ions from a gas is to pass an intense electron beam through it. The
electrons are accelerated to a kinetic energy in excess of the ionization energy of the gas atoms. A magnetic
field locks the electrons in an helical orbit from gun to trap, increasing the pathlength through the gas.
Collisions form ions extracted with an electric field.
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Figure 3.1: Creating and extracting ions from a gas

3.3 Acceleration

Accelerating charged particles can be accomplished with DC voltages or time-varying fields.

DC Acceleration

Figure 3.2: Simple DC acceleration by electric field: ∆E = qV

The simplest mode of DC acceleration involves a constant electric field, E, between two electodes, one
of which contains particle source. The voltage is limited to the energy at which the beam ions or electrons
begin creating additional ions and electrons in collisions, which leads to a breakdown of the field.

A somewhat more sophisticated approach to DC acceleration is to stage voltage drops with resister chain,
so that the beam particles accelerate over multiple gaps.

This approach is also subject to voltage breakdown, with a limit of about 10 MV.
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Figure 3.3: Current versus DC voltage, showing field breakdown

Figure 3.4: DC acceleration with a resistor chain; each stage at a different voltage, so there’s a field across
the gap

Cockcroft & Walton rectifier: Another way to create a DC voltage is to rectify (with a diode-capacitor
circuit) an AC voltage. A high DC voltage can be created from a low AC voltage by cascading rectifier
circuits. Each rectifier-capacitor group doubles voltage difference, so, given n rectifers, Vmax = 2nV is the
theoretical maximum. In practice, current losses limit the maximum voltage to Vmax ≈ 4 MV.

Vmax = 2nV − 2πI

ωC

(
2

3
n3 +

1

4
n2 +

1

12
n

)
(3.8)

Figure 3.5: A Cockcroft-Walton rectifier ladder, to which the input is V (t) = V sinωt and the output is
Vout < 2nV

Van de Graaf generator: Yet another method for generating strong DC voltages is to collect charge
mechanically on one side of a capacitor. A Van de Graaff generator accumulates charge on a hollow metal
sphere atop an insulated column. The charge is transferred to a belt by rubbing it against a dissimilar
material. It carries these charges to the sphere where they are transferred from the belt.
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Figure 3.6: Van de Graaff generator: (1) lower roller, (2) upper roller, (3) charging electrode, (4) electrode
collecting positive charge, (5) voltage generator, (6) spherical electrode (high voltage terminal), (7) ion
source, (8) extracted ion beam; a resistor-electrode train accelerates beam down extraction tube to target,
greatly reducing possibility of spark discharge

A Van de Graaff generator can produce voltage differences of Vmax ≈ 2−10 MV. It is used for low-energy
nuclear physics experiments, to produce X-ray beams for nuclear medicine, to sterilize food, and to process
materials.

Tandem accelerator: The DC acceleration of a Van de Graaff generator may be approximately doubled
by employing it in tandem mode first accelerating negatively-charged beam particles and then accelerating
the same particles again, but now positively-charged. The ion source produces negative ions which are
accelerated and sent through a stripping foil, which strips at least two electrons from the negative ions,
leaving them positively charged. These are accelerated through same potential difference but opposite
polarity to extraction. The energy is thus approximately doubled: Vmax ≈ 4− 20 MV.

Figure 3.7: Tandem accelerator
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Time-Varying Fields

In general, acceleration by time-vaying fields is accomplished with oscillating EM fields at radio-wave fre-
quencies (RF).

Figure 3.8: Linear accelerator employing time-varying fields

Beam particles interact with the field only half the time, when its direction is that of the boost direction.
This is referred to as the synchronism condition:

Tparticle =
1

2
TRF (3.9)

ℓ =
1

2
vTparticle (3.10)

where ℓ is the length of the drift or conducting tube. Acceleration thus occurs over only half the cycle. An
important consequence of this is that the beam forms a microstruction, called bunching. This happens by
applying the boosting field between edges of conducting tubes of increasing length, so particles are shielded
from reverse fields during the other half of the cycle.

Charged particles lose energy by radiating when accelerated, but such losses have been limited by the
development of cavities to store EM power in resonant volumes.

Non-resonant (unbunched)

Betatron: A circular apparatus is an alternative to a linear acceleration, and a monotonic interaction
is an alternative to an alternating voltage. The betatron exploits Faraday’s Law of Induction, in which an
electromotive force (EMF)–the electromagnetic work done on a unit charge as it travels around a conductive
loop–arises when the magnetic flux through the surface enclosed by the loop varies in time. If the magnetic
field increases with the momentum of the particle, the particle’s orbital radius will remain unchanged.

As the machine name implies, the betatron is an electron accelerator.



34 CHAPTER 3. ACCELERATORS

Figure 3.9: Betatron schematic (left) and operating principle (right)

E =
dϕB
dt

eE = e
dϕB
dt

= dW

F =
dp

dt
=
dW

ds
=

eE
2πr

=
e

2πr

dϕB
dt

dp =
e

2πr
dϕB

evB =
γmv2

r
γmv = p = eBr

dp = er dB
e

2πr
dϕB = er dB

dϕB = 2πr2dB

ϕB(t) = 2πr2B(t)

B(t) =
1

2

ϕB(t)

πr2
(3.11)

The instantaneous magnet field at the orbit is half the average flux through the loop. The current loop is a
donut-shaped vacuum tube that runs through a gradient field at the edge of a dipole.

The maximum energy, about 100 MeV, is limited by the magnetic field strength, which is itself limited
by the size of the magnet and flux saturation in the iron.

Resonant (bunched)

Cyclotron: An electric field alternating at a fixed frequency and a constant, uniform magnetic field
results in a spiraling particle beam with an increasing orbit.

In a cyclotron, ”dees,” D1 and D2 in the figure, are connected to opposite poles of a high-frequency
(MHz) electromagnetic oscillator, with Vmax = 10− 200 kV. A perpendicular magnetic field leads to circular
orbits:
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Figure 3.10: A schematic of a cyclotron; the ion source injects at the center (letter P)

qvB = m
v2

r
(3.12)

The field swaps polarity in the time it takes for particles to complete a half-circle, so, at each crossing,
they are accelerated by the field:

v =
qBr

m

T =
πr

v
=
πm

qB
(3.13)

Notice that the period is independent of trajectory radius. The radius of the beam’s trajectory increases
with momentum until extracted to bombard target.

The proper cyclotron frequency, ωc, can be found by solving the magnetic term of the Lorentz force:

F = qv ×B (3.14)

F =
dp

dt
= m(v̇x, v̇y, 0) = q(vyBz,−vxBz, 0) (3.15)

v̈x =
q

m
v̇yBz = − q2

m2
vxB

2
z (3.16)

v̈y = − q

m
v̇xBz = − q2

m2
vyB

2
z (3.17)

vx(t) = v0 cos (ωct) (3.18)

vy(t) = v0 sin (ωct) (3.19)

ωc =
q

m
Bz (3.20)
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For different m
q (that is, different ions), either the magnetic field or the oscillator/cyclotron frequency has

to be adjusted.

Relativistic effects limit the acceleration of light particles to around 20 MeV, since, at relativistic ve-
locities, increases in v diminish with energy. Higher masses can be accelerated to higher energies at non-
relativistic speeds.

Cyclotrons are currently used to analyze materials, transmute elements, proton cancer therapy, and
production of positron-emitting isotopes (PET imaging) and other radioisotopes for medical diagnostics.

Betatrons are used to accelerate electrons, while cyclotrons are used to accelerate protons and ions–all
at relatively low energies.

Linac: Again, a linac (linear accelerator) consists of metal drift tubes arranged along the beam axis
and alternately connected to opposites sides of an alternating voltages source:

V (t) = Vmax sin (ωt) (3.21)

where ω is in the radio frequency range, 20 kHz - 300 GHz. By the time particles of charge q reach the nth
drift tube, they have energy

En = nqVmax sinΦs (3.22)

where Φs is the average phase at the gap. Note that V < Vmax, so that the linac can work at maximum
potential without breakdown due to the presence of charged particles. Assuming v ≪ c, En = 1

2mv
2
n at the

nth drift tube. Alternating drift tubes are a half-period apart, so the distance from one gap to the next is

ℓn = vn
TRF

2
=

vn
2νRF

=
1

νRF

√
nqVmax sinΦs

2m
(3.23)

Continuous acceleration requires synchronization with the RF wave: particles must be injected with–and
maintain–a well-defined phase with respect to the oscillating field. In practice, ensemble particles are in-
phase and all at energy. If injection occurs prior to or at peak phase, phase differences will be amplified and
the ensemble will disperse.

Figure 3.11: Linear accelerator beam synchronization

Phase focusing occurs, when β ≪ 1, if

Φs <
π

2
(3.24)

Veff < Vmax (3.25)
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Synchrotron: The power capacity of a RF cavity is limited–when over-extended, the fields break
down–limiting the energy increase per unit length. The only way to increase the beam energy is to add
more cavities, but these, and real estate are expensive. Circular accelerators allow cavities to be reused
continually. On the other hand, the particle trajectory must be closed, requiring magnets. Also, transverse
acceleration results in higher radiation losses than longitudinal acceleration.

In a synchrotron, particles are constrained to a roughly circular, fixed-radius orbit by arrays of relatively
small electromagnets. The particles traverse one or more RF cavities repeatedly and are thereby accelerated.
To stay in orbit, both RF frequency and magnetic fields synchronously increase. The challenge: retain beam
particles traveling thousands or millions of km at nearly light speed inside a small vacuum tube of constant
(average) radius. The keys to this stability are phase stability and transverse focusing.

Phase Stability
The first step is to define a reference trajectory, s, referred to as a synchronous particle.

Figure 3.12: Coordinate system of a synchrotron accelerator

Being synchronous means that the RF frequency, ωRF, and (a multiple of) the revolution frequency, ωs,
are locked.

ωRF = hωs (3.26)

qvsB =
Mv2s
ρ

vs
ρ

= ωs =
eB

M
(3.27)

where h is the so-called harmonic number. As ωs increases, both the RF frequency and must the magnetic
field synchronously increase.

An oscillating RF-field can be represented as a sinusoidal function:

Ez = Emax sin (ωRFt) (3.28)
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If the field is assumed constant during transit interval (no transit-factor), then the work done is:

∆E =W =

∫
F dz = q sin (ωRFt)

∫
Emax dz = qVmax sin (ωRFt) = qVmax sinϕs (3.29)

where ϕs is an RF phase.

Figure 3.13: RF phase

A synchronous particle encounters the same RF phase, ϕs, each revolution. A bunch consists of 1011−1012

particles, few of which have the same momentum/energy. That is, there will be many non-synchronous
particles, whose momenta will differ from that of the synchronous particles’ momenta, p, by dp.

p = βγm = βγE0

dp = γ3E0dβ

dp

p
= γ2

dβ

β
(3.30)

Particles of different energies/momenta have different trajectories through the steering magnets, that is,
they will see different magnetic fields and so be displaced differently. With reference to the position of the
synchronous particle trajectory:

dx(s) = D(s)
dp

p
(3.31)

where D(s) is called the dispersion function, characteristic of the beam optics (arrays of magnets). Momen-
tum spread thus results in beam radius spread

dr

r
= α

dp

p
(3.32)

where α is called the compaction factor.

α ≡ 1

C

∮
D(s)

r(s)
ds (3.33)

where C is the trajectory circumference.

With respect to orbital frequency, what happens to non-synchronous particles depends on the energy
regime of the beam:

For β ≪ 1, energy/momentum increases increase ω; as β → 1, they do not. There’s a maximum frequency
at which a transition occurs.
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Figure 3.14: Revolution frequency as a function of momentum; note the transition in the function at a
maximum frequency

ω =
β

r
dω

ω
=
dβ

β
− dr

r
=

(
1

γ2
− α

)
dp

p
(3.34)

This leads to the so-called slip factor

η =
dω/ω

dp/p
=

1

γ2
− α (3.35)

which gives the relationship between revolution frequency and momentum for a given accelerator. Note that
it depends on both optics and momentum. The slip factor η > 0 before the transition and negative after.
This implies:

α =
1

γ2TR

(3.36)

at the transition, and dω/ω = 0, i.e., all particles have the same revolution frequency.

Figure 3.15: Phase stability on the RF phase diagram
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When β ≪ 1, momentum boosts increase particle velocity quickly, and the revolution frequency corre-
spondingly increases quickly. Particles arriving ahead of synchronous particles receive a smaller boost than
do the synchronous ones, and so don’t gain as much momentum, their velocity and revolution frequency do
not increase as much, and visa versa for those behind. At the transition energy/momentum, the revolution
frequency is maximal and universal. As β → 1, particle velocity is essentially constant, and momentum
gain leads to smaller revolution frequencies. The RF phase for synchronous particles must be altered from
ϕs → π−ϕs. Particles arriving ahead of a synchronous particle receive a greater momentum boost, which, in
the same field, means that their orbit radius will be larger and, therefore, their orbital velocity, ω < ωs, and
they tend toward the synchronous orbit. Particles arriving behind the synchronous ones receive a smaller
momentum boost, which, in the same field, means their orbital radius will be smaller and, therefore, their
orbital velocity ω > ωs, and they tend toward the synchronous orbit. The result of all this is that the parti-
cles stay in the bunch by undergoing so-called synchrotron (longitudinal) oscillations about the synchronous
orbit, maintining a condition referred to as phase stability.

The transition energy/momentum, again, depends on optics, so is characteristic of the accelerator, but is
typically around 10 GeV for protons. For electrons, β → 1 at relatively low momentum, nearly all electron
synchrotons operate above transition.

3.4 Transport

To restate the situation: between 100 billion and 1 trillion particles, essentially all with different initial
coordinates and velocities have to stay together within a few centimeters longitudinally and a few hundred
microns perpendicularly for up to millions of kilometers traveling near the speed of light. We’ve already
considered how ensembles of beam particles are created and how they are accelerated, and the way RF
acceleration bunches the particles and maintains the longitudinal extent of those bunches. Here, we consider
consider perpendicular motion, classified into radial (x) and transverse (y) directions, as opposed to the
longitudinal or tangential (s) direction.

Focusing

Steering and transport of beams are accomplished through the use of arrays (often referred to as “strings”)
of magnetic, electrostatic, and/or electromagnetic devices interspersed with so-called drift (field-free) re-
gions. The full collection of these devices is referred to as the lattice, now made up primarily of dipole and
quadrupole magnets. Dipoles primarily determine the geometry of the transport system. Multipole magnets
tend to be centered on the beam for the sake of focusing it. But recall the dispersion function, D(s). The
total effect of all of this is collectively called the accelerators optics.

As with longitudinal motion, particle motion is referenced to a certain class of particles, in this case,
those that traverse precisely the center of the multipole magnets in a trajectory referred to as a central,
equilibrium, or closed orbit.

Particles with the same momentum as the equilibrium ones, but slightly deviated spatially, undergo
betatron (perpendicular) oscillations about the central orbit in both radial, x(s), and transverse, y(s),
directions relative to the orbital plane. Particles whose momenta only differ from that of the equilibrium
particles undergo off-momentum orbits, synchrotron oscillations, primarily a longitudinal issue. If these,
however, are spatially deviated, as well, they (betatron) oscillate about the off-momentum orbit.

Dipole fields are perpendicular to the orbital plane, affecting the radial motion. With reference to the
central orbit (curvature ρ),
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F = qvB =
mv2

ρ

Bρ =
p

q
(3.37)

Again, as p increases, B must increase.
The quantity Bρ is referred to as the magnetic rigidity, and has units of tesla-meters when p is in GeV/c,

and GeV in natural units (so magnetic field strength is in GeV2). For a singly-charged particle, then,
Bρ ≈ 3.33p GeV (recall that e = 0.303).

Figure 3.16: The trajectory geometry of in a dipole magnetic field

sin
θ

2
=

L

2ρ
=

LB

2Bρ

θ ≈ LB

Bρ
=
qLB

p
(3.38)

That is, the bend for a given field strength is proportional to the length of the magnet traversed and inversely
proportional to the beam particles’ momentum.

Figure 3.17: Off-axis trajectory

Particles displaced radially and/or transversely from the central orbit enter the dipole at a different initial
angle and spiral around the central orbit, but never close, leading to instabilities. They need to be focused,
to more closely approximate the central orbit. This is the job of quadrupole magnets, which has no field
along the central axis, but otherwise By ∝ x and Bx ∝ y.

Notice that a particle deviated from the central axis in the vertical plane, is deflected towards the center of
the magnet, while a particle deviated in the horizontal plane is deflected further away from the center. That
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Figure 3.18: Quadrupole field; force vectors indicative of a beam of positively charged particles coming out
of the page

is, this magnet, known as a defocusing quad (reference to the horizontal plane) focuses vertically deviated
particles but defocuses horizontally deviated particles. The converse is true of a focusing quad. Overall
focusing can be accomplished, in analogy with optical lense arrays, with series of alternating focusing and
defocusing magnets separated by drift regions, often in sets referred to a a FODO lattice, to which one or
more dipole magnets and a RF cavity may be integrated.

Figure 3.19: FODO lattice with dipole magnets

Perpendicular motion is characterized by its displacement from the central trajectory, x(s) or y(s), and
its direction (small angle approximation) with respect to the central trajectory, x′(s) = dx

ds or y′(s) = dy
ds .

The resulting motion, called betatron oscillations, is oscillatory around the central trajectory.
The equation of perpendicular motion is given, then, by an equation like

d2x(s)

ds2
+ k(s)x(s) = 0 (3.39)

and similarly for y(s), where we now take the focusing plane to be horizontal and the defocusing plane to
be vertical.

The restoring force is position-dependent, and therefore not constant, but it is periodic: k(s+L) = k(s).
Thus, the oscillation will be quasi-harmonic, such that the amplitude and phase will also depend on s.

Because FB = qv ×B, and quadrupole fields increase linearly with deviation along either axis
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K =
dBy

dx
=
dBx

dy
(3.40)

we can define

By = Kx Bx = Ky (3.41)

We note that in this situation (no E-field or currents), the Maxwell equation

∇×B = 0 (3.42)

so that

B = −∇V (3.43)

so

V (x, y) = Kxy (3.44)

Normalizing the gradient to the momentum, or, rather the magnetic rigidity

k =
K

Bρ
(3.45)

gives us the ingredients of the differential equations (for the defocusing plane, k → −k). The periodic
nature of the restoring force makes Equation 3.39 a so-called Hill equation. It is an approximation ignoring
accelerating fields and multipole magnets higher than quadrupoles. Assuming k is linear, B is constant, and
we take only first-order terms, it has the general solution, for horizontal focusing,

x(s) = x(0) cos (
√
ks) +

x′(0)√
k

sin (
√
ks) (3.46)

x′(s) = −x(0)
√
k sin (

√
ks) + x′(0) cos (

√
ks) (3.47)

and vertically,

y(s) = y(0) cosh (
√
ks) +

y′(0)√
k

sinh (
√
ks) (3.48)

y′(s) = y(0)
√
k sinh (

√
ks) + y′(0) cosh (

√
ks) (3.49)

and vice versa for vertical focusing.
The trajectory in each quadrupole is a portion of an harmonic oscillation, but the idiosyncratic character-

istics of different devices means that the solution will look different at each location, hence the s dependence.
The number of oscillations per circumnavigation in each plane is called the tune, given by Qx and Qy, the
horizontal and vertical beam tunes.

These transformations can be written in a matrix formalism:(
x(s)
x′(s)

)
=M

(
x(0)
x′(0)

)
(3.50)
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where

Mfocus =

(
cos (

√
ks) 1√

k
sin (

√
ks)

−
√
k sin (

√
ks) cos (

√
ks)

)
(3.51)

and

Mdefocus =

(
cosh (

√
ks) 1√

k
sinh (

√
ks)

−
√
k sinh (

√
ks) cosh (

√
ks)

)
(3.52)

Also, in drift and pure dipoles, k = 0

Mdrift/dipole =

(
1 s
0 1

)
(3.53)

Notice that the determinants of each of the matrices equals 1, which, because they are square matrices,
implies that they belong to the special linear group, in which geometric properties are preserved.

The properties of each accelerator element can be translated into one such matrix, and thus the amplitude
and angle of each particle trajectory can be determined at that position in the lattice. Further, multiplying
the different matrices provides the trajectory, given some intial position and angle.

Mtotal =MfocusMdriftMdipoleMdriftMdefocus · · · (3.54)

To turn the integration constants, x(0) and x′(0), from initial conditions into parameters characterizing
the beam, identify the phase advance (with s),

ψx,y(s) =
√
ks =

∫ s

0

ds

βx,y(s)
(3.55)

the beam emittance (the area covered in x - x′ phase space) and beta function (the beam envelope, or
modulation amplitude of the optics),

εβx,y(s) =
2 (0) +

x′2(0)

k
or y2(0) +

y′2(0)

k
(3.56)

and initial phase,

ϕx,y = − tan−1 x′(0)

x(0)
√
k

or − tan−1 y′(0)

y(0)
√
k

(3.57)

x(s) =
√
ε
√
βx(s) cos [ψx(s) + ϕx] (3.58)

x′(s) = −
√
ε√

βx(s)
{αx(s) cos [ψx(s) + ϕx] + sin [ψx(s) + ϕx]} (3.59)

y(s) =
√
ε
√
βy(s) cosh [ψy(s) + ϕy] (3.60)

y′(s) =

√
ε√

βy(s)
{αy(s) cosh [ψy(s) + ϕy] + sinh [ψy(s) + ϕy]} (3.61)

where
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αx,y(s) = −1

2

dβx,y(s)

ds
(3.62)

Since ψx,y(s) is inversely related to βx,y(s), when the beam’s transverse dimension(s) are large, the
corresponding phase advance is small, and vice versa. The beam tunes are the net phase advances of the
transverse oscillations per revolution in units of 2π,

Qx,y =
1

2π

∮
ds

βx,y(s)
(3.63)

A plot of x′(s) versus x(s) is an ellipse, with (dropping subscripts) xmax =
√
εβ, at which x′ = −α

√
ε
β ,

and x′max =
√
εγ, at which x = −α

√
εγ, where

γ =
1 + α2

β
(3.64)

The ellipse is also described by the implicit equation

ε = γx2 + 2αxx′ + βx′2 (3.65)

The area of this ellipse is πε, which, according to Liouville’s theorem, is constant under the influence of
conservative forces. The beta-function (beam size) can be reduced with focusing, as it is near interaction
regions, but then γ and therefore the trajectory angles increase. In any case, the beam size reduction is
intrinsically limited by repulsion among the particles, known as the space-charge effect, and image charges
along the vacuum tube.
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Chapter 4

Detectors

4.1 Introduction

Reconstruction of a subatomic reaction implies satisfying the relativistic momentum-energy equation

m2 = E2 − |p|2 (4.1)

not just for each constituent of the reaction individually, but for all of them simultaneously∑
m = (

∑
E)2 − |

∑
p|2 (4.2)

Since each m and the sum of all m are invariants, and since each subatomic object is uniquely identified
by its mass, satisfying these equations tells us what the parent and all daughters of the reaction were. In
practice, the final state, which is comprised of especially long-lived particles–and not always all of these, is
normally detectable.

Other methods for determining m include measuring the momentum and the velocity separately or
determining the energy and the velocity separately:

p = βγm (4.3)

E = γm (4.4)

To reconstruct a subatomic reaction, then, it is necessary to determine some or all of the following: the
identities of reaction constituents, where they were when, and such of their characteristics as momentum or
velocity, energy, and spin and other angular momentum and associated values.

Rarely can a single instrument make all these measurements. Rather, combinations of detectors are
integrated into an experiment. The core parts of experiments measuring subatom reactions include tim-
ing, tracking, and calorimetric (energy-measuring) instruments, as well as tools exploiting specific matter
interactions to determine the velocities, momenta, energies, and/or identities of the constituents.

In general, tracking instruments, often embedded in a magnetic field, are closest to the reaction, followed
in turn by those with precising timing and calorimeters. Interspersed and usually following are instruments
for indentifying the various constituents.

47
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Figure 4.1: Typical, though basic, configuration of a modern sub-atomic particle experiment’s detector

The quality of an experiment, quantified typically as a resolution or relative uncertainty, is limited by
time, space, and energy resolution; detection efficiency; probability of misidentification; and two-particle time
(rate) and space resolution. Momentum resolution is limited by space resolution and magnetic field strength.
Velocity resolution is limited, depending on measurement method, by time resolution (time-of-flight), energy
resolution (dE/dx), and space resolution (Cerenkov angle measurement).

4.2 Tracking

Due to ionization, charged particles traversing material can leave a record of their passage.

4.2.1 Emulsions

Cecil Frank Powell from Bristol University, the discoverer of the pion, is credited with developing emulsion
exposures for detecting tracks of charged particles. His 1950 Nobel Prize was awarded for the development
of the photographic method of studying nuclear processes and his discoveries regarding mesons made with
this method. Emulsions have been used recently in neutrino experiments and are common in medicine.

Emulsion films are not really emulsions, but suspensions in a fluid. They contain AgBr and AgCl
molecules suspended in geletin typically coated on a glass substrate. The geletin layer is about 50 times
thicker, and silver the halide molecules are more than 50% denser, than the suspension of optical photographic
film. The silver crystal grains are also 0.1 the size, and their sizes and distribution are more uniform.

Ionizing particles passing through the emulsion break up these molecules, leaving silver atoms. Individual
silver atoms are unstable but are efficient electron traps. This leads to a clustering (nuclearization) of four
or more silver atoms, known as a latent image center, whose typical diameters is around 0.5 µm.

The cluster is reduced to metallic silver when developed. Developing further fixes the metaliyc silver
grains to the substrate, while the remaining gel and silver halide molecules are rinsed away. The grains may
then be observed as black dots when viewed with a microscope.

The advantages of using emulsions include unsurpassed spatial resolution (0.2 µm) and the ability to
measure both velocity (dE/dx) and momentum (amount of multiple scatter) in a single instrument. Disad-
vantages include limited volume, destructive processing required to visualize tracks, and no triggerability.
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4.2.2 Gas-Filled Detectors

Whenever a charged particle passes through a gas, it collides with some of the molecules of the gas and
disrupts these molecules. Often an electron may be driven away from the molecule, which is then said to be
ionized. As a result of the presence of these ions and electrons the gas gains electrical conductivity. When
exploiting these processes for particle detection, the equipment consists of a container to hold the gas and
two electrodes across which there is a potential difference.

Proportional Counter

Proportional counters consist of metal or glass cylindrical tubes, which are filled with gas and kept at
a negative potential (cathode). A fine wire is strung down the center of the tube and set to a positive
potential (anode). If the potential difference is V0, the tube radius is r2 (typically around 1 cm), and the
wire radius is r1 (20 - 100 µm), the internal electric field is

E(r) =
V0

r ln(r2/r1)
(4.5)

and an electron from an atom ionized by a charged particle passing through the gas at a perpendicular
distance ra from the center of the wire will gain kinetic energy

K = e

∫ rb

ra

E(r)dr (4.6)

when it comes to a perpendicular distance rb from the center of the wire. Once K exceeds the gas’s ionization
energy, additional electrons will be released, which in turn ionize atoms closer to the wire. This avalanche
of electrons is quantified as the amplification factor or gain–the number of secondary electrons reaching the
wire per initial ion pair–is characteristic of the gas and independent of the number of initial ion pairs. Thus,
number of electrons reaching the wire is proportional the the intial ionization, hence the name proportional
counter. A typical amplification factor/gain is around 105. Also typical is that approximately 100 electrons
per cm are liberated by a traversing charged particle.

There’s a limit to V0. Set too high, it may lead to a breakdown (spark), which can damage the fine
wire. But this can be controlled and exploited under certain conditions, in particular by the mixing in a
quenching gas–usually a complex organic molecule–that readily captures electrons. With the right mixture
and pressure, the discharge can propagate along the entire wire length. This is how a Geiger-Muller counter
works. If the very high voltage is pulsed, one can localize the original avalanche, resulting in a so-called
streamer chamber.

Multi-Wire Proportional Chamber

In the modern proportional counter, as developed by Georges Charpak (Nobel Prize 1992), spatial informa-
tion is obtained by having many fine parallel wires in a plane as one set of electrodes, between planar steel
meshes serving as the other. The applied voltage is typically 2000 V, with wires of diameter of order 50 µm
separated by 0.1 to 1 cm. The gas filling is usually an argon-alcohol mixture at atmospheric pressure. Each
wire has its individual transistor amplifier, and acts like a cylindrical proportional chamber. Amplification
factors are of order 5000, sufficient for single minimum-ionizing particles to be detected with 100% efficiency.
Two counters, with wires at right angles, one above the other, can be used to give the spatial position of a
particle within about 5 mm.
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Figure 4.2: Schematic of a multi-wire proportional chamber

Drift Chamber

To achieve good spatial and time resolutions with a MWPC requires an enormous number of wires and
amplifiers. Eqivalent resolutions at lower cost can be achieved by drifting the freed electrons from the
primary ionization through a low-field region of roughly 10 cm to the high-field avalanche region near the
anode wire. The time difference between a fast trigger and the time of the pulse on a wire on the wire gives
the distance from the wire of the primary ionization, r = vt, where v ≈ 50 µm/ns in a typical argon-alcohol
(butane or ethane) mixture. The typical drift time of around 25 µs means that drift chambers are suitable
only for relatively low incident particle rates.

Figure 4.3: Schematic of a drift chamber

4.2.3 Silicon Detectors

Though solid, a silicon works roughly the same as gas, but with electron-hole pairs instead of ion pairs
produced by ionization.

The electron density in silicon is a few thousand times larger than it is in gases, and the ionization energy
is a factor of 10 smaller (∼3 eV vs ∼30 eV), so large signals are available without the need for gas gains
(avalanches) in high voltage. The detectors are thin and the drift velocities of both electrons and holes
are high, so the detectors are fast, with, therefore, excellent time resolution. Narrow electrode strips and
small detector pixels provide ∼5 µm position resolution. These detectors are very expensive, though, so
are reasonable only for small instruments, usually around the interaction region, providing primary vertex
information.
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4.2.4 Measuring Charged Particle Momenta

Embedding tracking detectors in magnetic fields provides a means for measuring track momenta from the
curvature of the trajectory:

p⊥ = rzeB (4.7)

for p in GeV, B in tesla, and r in meters, so that e = 0.3.

Assuming three positions have been measured along the trajectory, the sagitta

s = x2 +
x1 + x2

2
(4.8)

Assuming L≪ r. Since r = s+ h, and h = r cos θ
2 ,

s = r(1− cos
θ

2
) ≈ 1

8
rθ2 =

eBL2

8p⊥
(4.9)

Assuming that individual position measurements are known to the same resolution σx, then

σs =

√
3

2
σx (4.10)

so that (
δp⊥
p⊥

)
spa

=
σs
s

=

√
3

2
σx

8p⊥
eBL2

=
96

σ x

p⊥
eBL2

(4.11)

With more measurements, the contribution of one measurement to the overall uncertainty decreases. As
the number N of measurements becomes large(

δp⊥
p⊥

)
spa

=

√
720

N + 4
σx

p⊥
eBL2

(4.12)

So the position resolution contribution to the momentum resolutions becomes worse with momentum but
improves with B and L as 1/BL2.

Multiple scattering also contributes to the momentum uncertainty independent of the position resolution.
In fact, this dominates the uncertainty at low momentum, but becomes less important at higher momentum.
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4.3 Timing

The multiple remnants of a reaction are associated with one another for analysis by comparing time stamps
in the data. The greater the rate of reactions, the more precise the time needs to be.

4.3.1 Scintillator

Scintillation counters are among the most frequently used instruments in nuclear and particle physics. Mod-
ern scintillation materials include plastics such as polystyrene, organic liquids (for example, toluene); in-
organic crystals (such as sodium or cesium iodide), and organic crystals (like anthracene). Ionization due
to the traversal through such materials of an ionizing particle results in emission of fluorescent light over
a broad range of wavelengths. In organic scintillators, for example, the emission is principally in the short
(UV) wavelength region. A wavelength-shifting dye is usually mixed into the scintillator material. The UV
emissions of the scintillator material excite the dye, which reemits in the visible region. The decay times of
fast scintillator is typically of order 1 ns.

The light output of inorganic crystals, such as NaI(Tl), is essentially proportional to the ionization energy
loss. These are therefore used for calorimetry. This is not the case with organic scintillators.

4.3.2 Photodetectors

Figure 4.4: Photomultiplier tube

A scintillating material is usually enclosed on all but one face in a thin layer of reflecting material, such
as aluminum foil, to optimize the chances that the light it emits falls onto the unshielded face. This ensures
that as much of the light as possible is directed at the cathode of a photomultiplier, which is in direct contact
with the unenclosed scintillator face or with the end of a light pipe which is optically attached (minimizing
refractive-index-boundary-induced reflection at the interface).

The peak spectral response of the typical photomultiplier is around the shorter wavelength region of the
visible spectrum, roughly the transition from violet to blue. The photocathode is coated with alkali metals,
so that electrons are readily emitted as a result of the photoelectric effect. Maximum photocathode quantum
efficiency

QE(λ) =
Ne

Nγ(λ)
(4.13)

is typically around 25% for λ = 400 nm.
A minimum ionizing particle loses about 1.5 MeV of energy to ionization traversing 1 cm of plastic scin-

tillator. Such a traversal liberates on average 104 photons, each with a mean energy hv = 3 eV, meaning that
about 2% of the energy loss results in fluorescence. Assume 10% of the light makes it to the photocathode,
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whose quantum efficiency over the full spectrum is 10%, then approximately 2000 photoelectrons will be
emitted, sufficient to ensure nearly 100% efficiency.

For each photoelectron ejected from the cathode, the successive secondary-emission electrodes (dynodes),
which emit on average 4 secondary electrons for each incident electron, ultimately generate some 108 electrons
at the anode. The transit time from cathode to anode is about 50± 1 ns, where the uncertainty is known as
the jitter. The output of the anode is a voltage pulse.

The width of the output pulse, referred to as the response time, depends on the time required for the
light to make its way to the photocathode and the fluorescence decay time–between 3 and 30 ns for organic
materials and around 250 ns for NaI–as well as the photomultiplier jitter. All of this limits this width to
around 10 ns for plastic scintillatory.

The great advantages of the scintillation counter are that it is robust, simple, and efficient, giving large,
sharp output pulses. Its spatial resolution is poor, since the pulse is not related in an obvious way to
the location of the trajectory of the charged particle through the counter. Thus, if spatial information is
required, it is necessary to use a large hodoscope array of very small counters with photomultipliers at each
end. Coincident signals from each of them reduces random noise that characterizes all photomultiplier tubes,
while the time difference between the two signals allows an estimation of the traversal point in a counter.
The rate of accidental coincidences is small because of the good intrinsic time resolution time.

4.4 Calorimetry

Total absorption, in which a traversing particle’s kinetic energy develps into a shower cascade due to multiple
ionization or excitation processes, can in principle allow determination of both position and energy, the latter
to a fractional energy resolution that varies as 1/

√
E. At high energy (above 10 GeV), then, this resolution

competes with that of a momentum determination by the bend in a magnetic field. In general, as well, the
response time of total absorption instruments is an order of magnitude shorter than that of gas trackers (100
ns vs 1 µs), so that such signals can be used in event-selection decision making.

4.4.1 Electromagnetic Calorimeter

The electromagnetic cascading of photons and electrons through radiation energy loss (bremsstrahlung and
pair production) in materials allows their total energy to be measured along the path of the shower. Coulomb
scattering spreads the shower laterally, the extent of which depends on the radiation length, a characteristic
of the material, and the angular deflection per radiation length at the critical energy, Ec, at which shower
development ceases. This is expressed in terms of the Molière radius

Rm = 21

(
X0

Ec

)
(4.14)

which is, by definition, the radius of a cylinder containing on average 90% of the radiated energy. Two
Molière radii contain 95% of the energy. The smaller a material’s Molière radius, the greater resolution of
the shower position, and the less likely it is that showers will overlap (shower separation will be improved).

High Z materials with short radiation lengths are preferred for electromagnetic calorimeters. Typically,
relative energy resolutions

∆E

E
=

0.05√
E

(4.15)
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where E is measured in GeV, are achieved. This results from the facts that the number of particles at shower
maximum N ∝ E, while this number fluctuates as

√
N .

4.4.2 Hadron Calorimeter

Similarly, a hadron traversing matter can produce a shower if it collides inelastically with a nucleus. The
longitudinal extent of such showers depend on the nuclear interaction length λI .

While the energy of electrons and photons ultimately leads to ionization, so that ionized electrons can be
collected as a measure of energy, hadrons lose roughly 30% of their energy through nuclear fission, excitation,
and evaporation, none of which will produce observable signals. This can be compensated somewhat through
the use of materials that release nucleons with sufficient kinetic energy to ionize atoms in the material, but the
typical energy resolution of a hadron calorimeter is an order of magnitude worse than the energy resolution
of an EM calorimeter:

∆E

E
=

0.5√
E

(4.16)

The nuclear interaction length tends to increase with Z, while the radiation length tends to decrease, so
hadronic showers tend to be much larger, both longitudinally and transversely. Hadron calorimeters thus
tend to be much larger than electromagnetic calorimeters.

4.5 Particle Identification

Particle speed is sometimes measured directly by time of flight instruments, two fast, high-precision detectors,
such as scintillator counters, separated by a known distance L. The difference between the traversal times
at these detectors gives the speed, β = L/∆t. Then, a separate momentum measurement gives the particle
identity:

m =
p

βγ
= p

√
1

β2
− 1 = p

√
(∆t)2

L2
− 1 (4.17)

Cerenkov detectors (β = 1
n cos θ ) and instruments that can measure ionization density (dEdx ∝ 1

β2 ln
(
β2γ2

)
)

are other tools to determine speed.
Particle identification is also made possible by the fact that the different final state particles interact in

different ways in different materials.
Traversing electrons leave ionization trails in low-density matter and shower electromagnetically while

their energy is absorbed in dense matter. The showers begin forming rather deeply into the material and
are relatively short and well-collimated.

Traversing photons do not leave an ionization trail in low-density matter, but do shower electromagneti-
cally while their energy is absorbed in dense matter. The showers begin forming at the front surface of the
material and are relatively short and well-collimated.

Sufficiently long-lived charged hadrons, principally protons, pions, and kaons, leave ionization trails in
low-density matter and shower hadronically while their energy is absorbed in dense matter. The showers
begin forming anywhere in the material and are long and diffuse.

Sufficiently long-lived neutral hadrons, principally neutrons and kaons, do not leave an ionization trail in
low-density matter, but do shower hadronically while their energy is absorbed in dense matter. The showers
begin forming anywhere in the material and are long and diffuse.
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Muons, which are charged, leave ionization trails in both low- and high- density matter, but very rarely
shower, so their energy is rarely absorbed.

Neutrinos, which are neutral, do not ionize material, leaving no trail of there passage through it. Their
presence must be inferred by missing energy or momentum imbalance.

The identity of all other particles is inferred by reconstructing the energy and momentum of the particles
just listed. Such reconstruction can result in invariant masses and displaced vertices.

Figure 4.5: End view of typical detector showing various particle interactions in the different components

Figure 4.6: Signatures of various particles traversing detector layers
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Figure 4.7: Schematic of the CMS detector at the LHC

Figure 4.8: Layout of a fixed target experiment’s detector array



Chapter 5

Non-Relativistic Bound States

5.1 Introduction

Schrödinger’s equation and the apparatus of non-relativistic quantum mechanics were developed specifically
for bound states, while relativistic quantum mechanics and quantum field theory were not. Therefore bound
systems whose constituents’ velocities remain substantially below c are more readily analyzed than systems
with relativistic constituents. Although this is a course on subatomic physics, we will study a bit of atomic
physics as a prototype for (non-relativistic) bound states.

A simple criteria for identifying a system as non-relativistic is that the binding energy is substantially
smaller than the rest energies of the constituents. That is, if the composite mass is nearly the same as the
sum of constituent masses, then the system is non-relativistic. If the composite mass is much smaller than
the sum of constituent masses then the binding energy is large, and the constituents are probably moving
relativistically. The total energy of a composite system consists primarily of constituent rest energies,
constituent kinetic energies, and configuration potential energy. By the virial theorem (twice the time-
averaged kinetic energy 2 < T >= n < V > the time averaged potential energy of the form V (r) = Crn),
constituent kinetic energies and configuration potential energy have comparable magnitudes, implying that
when the configuration potential energy (binding energy) is small relative to the sum of constituent rest
energies, then so too is the sum of constituent kinetic energies.

5.1.1 Schrödinger’s Equation

If the behavior of a non-relativistic object with mass m is represented by a function Ψ(r, t), then the time
evolution of this function under the impact of a (in general, space- and time-dependent) potential, V (r, t) is
given by Schrödinger’s equation, (

− ℏ2

2m
∇2 + V

)
Ψ = iℏ

∂

∂t
Ψ (5.1)

|Ψ(r, t)|2d3r (5.2)

is the probability of the object being in the infinitesimal volume d3r. Because it is somewhere,

57
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∮
|Ψ(r, t)|2d3r = 1 (5.3)

If V has no t-dependence, then the energy sytsem E can serve as a separation constant to solve the
equation via separation of variables

Ψ(r, t) = ψ(r)e−iEt/ℏ (5.4)

ψ(r), is the eigenstate of the Hamiltonian operator,

Ĥ ≡ − ℏ2

2m
∇2 + V (5.5)

with eigenvalue E, and

Ĥψ(r) = Eψ(r) (5.6)

is called the time-independent Schrödinger equation.
If V is a central, spherically-symmetric potential, so that it depends only on r, then ψ itself is factorable

in spherical coordinates

ψ(r, θ, ϕ) =
u(r)

r
Y ml

l (θ, ϕ) (5.7)

Y ml

l (θ, ϕ) are spherical harmonics whose labels l and ml represent the quantum numbers of total orbital
angular momentum and the z-projection of the total orbital angular momentum, respectively.

u(r) satisfies the radial Schrödinger equation,

− ℏ2

2m

d2u

dr2
+

[
V (r) +

ℏ2

2m

l(l + 1)

r2

]
= Eu (5.8)

which must be solved for a given potential, V (r), to which is combined the relevant Y ml

l (θ, ϕ) and e−iEt/ℏ to
yield the full wave function. The bracketed terms are collectively referred to as an effective potential, with
the second term, called the centrifugal barrier, modifying the interaction potential. The magnitude of this
modification clearly depends on the magnitude of the orbital angular momentum. It is repulsive and acts to
keep entities apart, since angular momentum is conserved; entities can merge only for L = 0.

Normalizable solutions to Equation 5.8 are found with only certain values of the energy E, so-called
allowed energies, the primary objectives of investigations of the system.

5.2 Hydrogen-like Atoms

Atoms with a single electron are non-relativistic bound systems, in which even those with very large Z (many
protons) have total ionization energies < 12 keV, while an electron’s rest energy is 511 keV. Further, the
binding potential, the Coulomb potential,

V (r) = −Ze
2

r
(5.9)

is due to the protons in the nucleus, which is thousands of times more massive than an electron, so, to excellent
approximation, can be considered stationary. The atomic wave function of these entities is essentially that
of the electron.
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5.2.1 Hydrogen

For Hydrogen, Z = 1. The energies giving normalizable solutions are:

En = − me4

32π2n2
= −α2m

(
1

2n2

)
= −13.6

n2
eV (5.10)

where n = 1, 2, . . . is the principle quantum number, and

α =
e2

4π
=

1

137
(5.11)

is the fine structure constant.
The corresponding normalized wave functions, which depend on the so-called Bohr radius

a =
4π

me2
= 2.7× 10−4 eV−1 = 0.5× 10−8 cm = 0.5 Å (5.12)

the scale of an atomic radius, and associated Laguerre polynomials, Lk
n(x), are, for completeness,

Ψn,l,ml
(r, θ, ϕ, l) =

{(
2

na

)3
(n− l − 1)!

2n[(n+ l)!]3

}1/2

e−r/na

(
2r

na

)l

L2l+1
n−l−1

(
2r

na

)
Y ml

l (θ, ϕ)e−iEnt (5.13)

The quantum numbers n = 1, 2, . . .; l = 0, 1, . . . , n − 1; and ml = −l, −l + 1, . . . , l − 1, l label,
respectively, the state energy, the total angular momentum, and the z-component of the total orbital angular
momentum.

Note that for each n, the electron may have n different values of l, each of which can be projected to
2l + 1 different values of ml. The nth energy level, then, can have n2 distinct states:

n−1∑
l=0

(2l + 1) = n2 (5.14)

referred to as the degeneracy of the nth energy level.

5.2.2 The Hydrogen Spectrum

The principle quantum number identifies so-called stable states, in which the electron, although “orbiting,”
does not emit radiation, in contrast to the classical electromagnetic theory of accelerating charges. Transi-
tions between stable orbits implies a transition between energy levels. With hydrogen, as with any atom,
this energy transition is mediated, and thus measured indirectly, via the emission or absorption of light,

E =
2π

λ
= En1

− En2
(5.15)

which is the energy difference between initial and final states, n1 and n2.
The wavelengths of light associated with all such transitions between atomic hydrogen’s discrete energy

levels create radiation spectra given by the Rydberg formula:

1

λ
= R∞

(
1

n21
− 1

n22

)
(5.16)
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with the Rydberg constant,

R∞ =
me4

64π3
= 2 eV = 107 m−1 = 10−3 Å

−1
(5.17)

and n1 < n2 are (integer) principle quantum numbers.

R∞ follows directly from the determination of the principle energy levels in solving the radial Schrödinger
equation, which assumed the mass number of the nucleus M ≫ m the electron mass number. Better
agreement with experiment results from using the reduced mass

µ =
mM

M +m
=

m

1 + m
M

=
M

1 + M
m

(5.18)

Applying this correction to the Rydberg constant, m→ µ gives the Rydberg constant for hydrogen.

RH =
R∞

1 + m
M

Since, for hydrogen, M
m ≈ 2000 (and bigger for other atoms), the correction factor is 0.9995 or more,

approaching 1.

Table 5.1: Hydrogen spectra

n1 n2 Spectral Series Name Spectrum Range Convergence Wavelength
1 2 → ∞ Lyman ultraviolet 91 nm
2 3 → ∞ Balmer visible 365 nm
3 4 → ∞ Paschen infrared 820 nm
4 5 → ∞ Brackett far infrared 1458 nm
5 6 → ∞ Pfund far infrared 2278 nm
6 7 → ∞ Humphreys far infrared 3281 nm

Figure 5.1: Graphical representations of hydrogen spectra
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5.2.3 Hydrogenic Atoms

Atoms, stripped of all but one electron, behave just like hydrogen except that the nuclear charge Z ̸= 1 and
the reduced mass number take into account the larger nuclear mass number:

1

λ
= R∞Z

2

(
1

n1
− 1

n22

)

5.2.4 µ- and π-Mesic Atoms

Both pions (mesons containing up and down quarks) and muons (leptons, like electons, only heavier) have
negative charge states and can therefore form hydrogenic atoms with bare nuclei. The mass numbers of these
particles are several hundred times larger than that of the electron, and so the resulting orbits are much
smaller, perhaps even within the nuclear charge distribution.

5.3 The Zeeman Effect

5.3.1 Classical Orbital Angular Momentum

A particle of mass number m in a central force experiences no torque

τ =
dL

dt
= 0 (5.19)

so the angular momentum L = mv × r of its elliptical orbit is constant in both magnitude and direction.
Consequently, Lz = |L| cos θ, where 0 ≤ θ ≤ 180◦, will also be constant, regardless of axis orientation. |L|
depends on the eccentricity (ϵ =

√
a2 − b2/a) of the ellipse, such that for ϵ = 0 (a circle), L = mva =

a
√
−2mE, while for ϵ ≈ 1 nearly a straight line L = 0. E is the total energy, constant, as well, in a central

force, and depends only on the value of the major axis, 2a, E ∝ 1/2a, not the eccentricity or instantaneous
position.

5.4 Classical Magnetic Dipole Moment

An electron in circular orbit, equivalent to a current I = eν, where e is the electron charge and ν is the
orbital frequency, produces a magnetic dipole with moment

µ = I×A (5.20)

where A is the (vector) area of the loop. For circular motion, where v = rω = 2πrν,

|L| = mvr = m(2πrν)r = 2mνπr2 =
2m

e
|µ| (5.21)

Thus,

µ = − e

2m
L (5.22)

the directions being opposite due the the electron’s negative charge.
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In an external magnetic field B, the dipole experiences a torque

τ = µ×B (5.23)

so that µ and B tend to align. Integration of the torque with respect to angular position yields the potential
energy change

UB = −µ ·B =
e

2m
L ·B (5.24)

Arranging the reference frame so that the z-axis is parallel to B,

UB =
e

2m
Lz|B| (5.25)

5.4.1 Quantization of Orbital Angular Momentum

Applying an external magnetic field to discharging atoms splits spectral lines, the frequency shift being
directly proportional to the magnitude of the applied field. This indicates the existence of discrete energy
levels in addition to those of the principle quantum states. Because the splitting is discrete, is seems that
both magnitude and direction of orbital angular momentum are quantized. In the case of magnitude,

|L| =
√
l(l + 1) (5.26)

where l is the orbital angular momentum quantum number, ranging from l = 0, 1, 2, . . . , n−1, for principal
quantum number n.

Additionally, the direction of L is oriented in such a fashion that its z-component (the component parallel
to B) is quantized:

Lz = ml (5.27)

where m is the magnetic quantum number, ranging from ml = −l, −(l− 1), . . . , 0, . . . , l− 2, l− 1, l. Note
that for l ̸= 0, Lz < |L|.

Because UB = e
2mLzB and Lz is quantized, then the total energy is quantized

E = En + UB = En +
e

2m
LzB = En +ml

e

2m
B (5.28)

where En is the discrete energy level when B = 0. e
2m is called the Bohr magneton, µB .

The result is that an external magnetic field splits the total energy into 2l + 1 equally-spaced energy
levels, leading to additional discrete lines upon discharge.

The most common transitions, known as electric dipole transitions, follow the selection rules

∆l = ±1 and ∆ml = ±1 or 0. (5.29)

Thus, three lines will be seen

∆E = 0 and ∆E = ± e

2m
B (5.30)

Note the proportionality of the shift to the field strength. This result is known as the “normal” Zeeman
effect. Other transitions occur, but are much weaker. For example, the electron has its own, intrinsic, angular
momentum, which contributes to further splitting, due to what is known as the “anomalous” Zeeman effect.
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5.5 Electron Spin

Spin S is the name given to intrinsic angular momentum. It’s magnitude, in analogy with orbital angular
momentum, is given by

|S| =
√
s(s+ 1) (5.31)

with z-component
Sz = ms (5.32)

where ms = −s, −(s− 1), . . . , 0, . . . , s− 1, s.
The intrinsic angular momentum also gives rise to a magnetic moment

µs = −gs
e

2m
S (5.33)

where gs is the dimensionaless gyromagnetic ratio. Note,

gs =
|µs|/|S|
|µ|/|L|

(5.34)

Experiment shows that gs ≈ 2, indicating that the intrinsic magnetic moment to angular momentum ratio
is about twice as large as the same ratio with respect to orbital angular momentum.

The existence of this intrinsic spin was demonstrated in an experiment performed by Stern and Gerlach.
The resulting split in the distribution results from a net deflecting force of an inhomogeneous magnetic field
exerted on each magnetic moment µs of Fz = µsz

dB
dz .

The potential energy of a charged particle with magnetic moment µs in an inhomogeneous magnetic field
B is

UB = −µB ·B = −µsxBx − µsyBy − µszBz (5.35)

Arranging the reference frame so that By = 0, then Bx and Bz depend only on x and z (not y)

FB = −∇UB =
∂

∂x
(µsxBx + µszBz )̂ı+

∂

∂z
(µsxBx + µszBz)k̂ (5.36)

Figure 5.2: Stern-Gerlach apparatus

In a Stern-Gerlach experiment ∂Bz/∂x = ∂Bx/∂z = 0, and, in fact, Bx ≈ 0 integrating along the beam
axis (undulating motion), while ∂Bx/∂x≪ 1, so:

FB = Fz = µsz
∂Bz

∂z
(5.37)
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One might expect, if there weren’t spin, to find a smear up and down, but instead, two clusters, above
and below the center line, were found.

5.6 Fine Structure

Spectal lines associated with principle quantum numbers resolve into closely spaced pairs, triplets, etc., due
to two effects.

5.6.1 Relativistic Correction

Schrödinger’s equation is derived from the classical expression for kinetic energy in terms of momentum:
p2/2m→ −iℏ/2m∇2.

A Taylor expansion of the expression

E2 = p2 +m2 (5.38)

substituted into
K = E −m (5.39)

yields the second-order correction

∆E ≈ − p4

8m3
(5.40)

5.6.2 Spin-Orbit Coupling

From the electron’s frame of reference, the nucleus appears to orbit with the same angular velocity as the
electron does when measured in the nuclear reference frame. This nuclear orbit, the equivalent of a current
loop, gives rise to a magnetic field, which interacts with the electron’s magnetic moment. Because this
magnetic moment is proportional to the spin, and because the orbit-induced magnetic field is proportional
to the angular momentum of the orbit, the interaction is referred to as spin-orbit coupling. A potential
energy arises

U ∝ L · S ∝ µs ·B (5.41)

which results in two modifications to electron motion: Larmor and Thomas precession.

5.6.3 Total Angular Momentum

The total angular momentum, J, is the vector sum of the orbital and spin angular momenta:

J = L+ S (5.42)

J2 = L2 + S2 + 2L · S (5.43)

J2 = j(j + 1) L2 = l(l + 1) S2 = s(s+ 1) (5.44)

|L · S| =
1

2
[j(j + 1)− l(l + 1)− s(s+ 1)] (5.45)

∆Eso ∝ j(j + 1)− l(l + 1)− s(s+ 1) (5.46)
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the energy splitting to to spin-orbit coupling.
Possible values for j are j = |l − s|, |l − s|+ 1, . . . , l + s− 1, l + s, where l and s are, respectively, the

orbital and spin quantum numbers. For hydrogen-like atoms, s = 1/2, so

j =

{
l + s, l − s l > 0
s l = 0

(5.47)

As with orbital and spin angular momentum, the z-direction of J is quantized when defined physically

Jz = mj (5.48)

where mj = −j, −j + 1, . . . , j − 1, j.
Combining both relativistic and spin-orbit corrections:

∆Efs = −α4m
1

4n4

(
2n

j + 1
2

− 3

2

)
(5.49)

This correction is α2 < 10−4 smaller than the principle energies, and negative. Note that, as l =
0, . . . , n− 1, j = 1

2 , . . . , n− 1
2 , the nth principle energy level splits into n sublevels.

5.7 Hyperfine Splitting

The spin of the nucleus also creates a magnetic field, interacting with both the electron’s orbit (nuclear
spin-orbit interaction) and its spin (spin-spin), together leading to so-called hyperfine splitting. Note that
the nucleus is a compound object and its mass is large, so its dipole momentum is small and a bit more
complicated to calculate:

µp = γp
e

mp
Sp (5.50)

where γp ≈ 2.8. Thus,

∆Ehf =

(
m

mp

)
α4m

γp
2n3

±1

(f + 1
2 )(l +

1
2 )
, for f = j ± 1

2
(5.51)

where f = j + sp, the total angular momentum quantum number (orbital plus both spins).
Due to the ratio of masses, hyperfine splitting is about 1000 times smaller than fine structure splitting

and, depending on spin direction, raises or lowers the energy.

5.8 Lamb Shift

Because fine structure splitting ends up depending on j and not explicitly on l, states with different l but
same j should be degenerate. It turns out that they are not, due to the explicitly QFT effects of vacuum
polarization (spontaneous electon-positron production around the nucleus), which screens the nuclear charge;
electron mass renormalization (that is, the ground state-energy of the electromagnetic field due to the nuclear
charge is non-zero: so-called vacuum fluctuations in the field affect the electron’s energy), and anomolous
magnetic moments (modifications, known as radiative corrections to the magnetic dipole moment result in
gs not being exactly 2).
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Figure 5.3: Feynman diagrams of vacuum polarization processes that result in Lamb energy shifts

∆ELamb = α5m
k(n, 0)

4n3
, for l = 0 (5.52)

where k(n, 0) ≈ 13, but varying with n from 12.7 (n = 1) to 13.2 (n→ ∞).

∆ELamb = α5m
1

4n3

[
k(n, l)± 1

π(j + 1
2 )(l +

1
2 )

]
, for l ̸= 0 and j = l ± 1

2
(5.53)

where k(n, l) < 0.05.

Clearly, this is a small effect, especially when l ̸= 0, about 0.1 of fine structure when l = 0, and positive.

Figure 5.4: Spectrum shifts due to the various effects described
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5.9 Many-Electron Atoms

5.9.1 The Pauli Exclusion Principle

No two electrons can have the same set of quantum numbers (n, l, ml, ms). That is, two electrons cannot
simultaneously occupy the same state.

5.9.2 A Single Particle in a One-Dimensional Box

Consider a particle of mass number m moving in a one-dimensional, infinitely deep “box” of length a. The
energy is quantized

En =
n2

2ma2

where n is a positive integer. If the particle is, say, an electron, with intrinsic spin, then its state is specified
by two quantum numbers (n, ms).

5.9.3 More Than One Particle in a One-Dimensional Box

If the box contains two electrons, then, in the lowest energy (ground) state of the system, the primary
quantum number of both is n = 1. But the two will not have the same pair of quantum numbers. One will
have spin up (1, + 1

2 ), the other will have spin down (1, − 1
2 ). A third electron could not, according to Pauli,

also have n = 1. In the ground state, it would have n = 2, as would a fourth electron, one with up-spin, the
other with down-spin. A fifth electron in the ground state would have n = 3, and so forth. Thus, the Pauli
exclusion principle implies that the energy of a multi-particle spin-1/2 system is higher than it would be if
all particles would be at n = 1.

Excited states may exist, in which one or another electron is not occupying the lowest possible energy
configuration, and photon emission occurs when an excited state relaxes to the ground state.

What happens when a magnetic field interacts with the spin of three non-interacting particles in the
ground state of an infinite square well?

E = En − µ ·B = En − µszB = En +ms
eℏ
m
B (5.54)

If the particles are spin-1/2, for example, the spin of third particle in the n = 2 state could be either up or
down when no magnetic field is present, but must be down (ms = −1/2) for the system to remain in the
ground state with an external magnetic field (why?).

5.9.4 Spectroscopic Notation for Electron Configurations

Assuming an independent particle model, in which individual electrons move independently in the nuclear
field and the average field of other electrons, electron states are described by the quantum numbers n, l, ml,
ms.

Electrons with the same n are said to occupy the same electron shell, which, for some purposes, are
designated

n value: 1 2 3 4 . . .
symbol: K L M N . . .

Although they may occupy the same shell, electrons with a given n may occupy different subshells or
orbits, designated by l. For a given n, l = 0, . . . , n− 1, and each corresponding state is designated
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l value: 0 1 2 3 4 5 . . .
symbol: s p d f g h . . .

A particular orbit is then defined by the pair (n, l), and the convention is to symbolize this orbit by
nl, with n given by its value and l given by its symbol. The number of electrons in an orbit is given by
a superscript, and a configuration is designated by a sequence of orbits. The five-electron configuration of
boron in its ground state, for example, is given by 1s22s22p1. Thus, in the L (n = 2) shell of ground-state
boron, 2 electrons occupy the s subshell and 1 electron occupies the p subshell.

5.9.5 The Atomic Shell Model

The Pauli exclusion principle implies that the maximum number of electrons in a subshell can be determined
from the values of ml and ms. There are 2l + 1 values of ml for each l and 2S + 1 = 2 values of ms

for each S, which is 1/2 for electrons. Then the maximum number of electrons in a subshell is 2(2l + 1):
l value: 0 1 2 3
subshell symbol: s p d f
maximum number: 2 6 10 14

5.9.6 Spectroscopic Notation for Atomic States

Atomic states are specified by the quantum numbers related to total orbital angular momentum, total spin
angular momentum, and total angular momentum, L, S, J . L values are designated

L value: 0 1 2 3 4 5 . . .
symbol: S P D F G H . . .

Atomic state designation is by total orbital angular momentum, L, pre-superscripted by 2S + 1 and
post-subscripted by J , so, for ground-state boron, where L = 1, S = 1/2, J = 1/2, the notation is 2P1/2.

5.9.7 LS Coupling

As in the case of hydrogenic atoms, residual Coulomb interactions, spin-orbit interactions, and spin-spin
interactions complicate the simple model. Given

L =
∑
i

Li (5.55)

S =
∑
i

Si (5.56)

where the vector sum is over all electrons, the total angular momentum

J = L+ S (5.57)

Each vector is quantized with magnitude

|L|2 = l(l + 1)ℏ2 (5.58)

|S|2 = s(s+ 1)ℏ2 (5.59)

|J|2 = j(j + 1)ℏ2 (5.60)
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The quantization implies, therefore, that the total angular momentum quantum number j, again, has the
values j = l + s, l + s− 1, l + s− 2, . . . , |l − s|. The z-components are also quantized

Lz =Ml (5.61)

Sz =Ms (5.62)

Jz =Mj (5.63)

where

Ml =
∑
i

(ml)i = −l, −l + 1, . . . , l − 1, l (5.64)

Ms =
∑
i

(ms)i = −s, −s+ 1, . . . , s− 1, s (5.65)

Mj =Ml +Ms = −j, −j + 1, . . . , j − 1, j (5.66)

so, l, s, and j can be inferred from Ml, Ms, and Mj .
What is the relationship between the total electron magnetic moment and the total angular momentum?

µ = µL + µS = − e

2m
L− 2

e

2m
S = − e

2m
(L+ 2S) (5.67)

And,
J = L+ S (5.68)

Further, since
|µL|
|L|

=
1

2

|µS |
|S|

(5.69)

the triangles indicated by the vector equations are not similar, and so the resultants are not (anti-)parallel.
Thus, µ /∥ J.
Then, what is the projection of the total magnetic momentum µ on the total angular momentum J?
Using Equation 5.67,

µJ =
µ · J
|J|

= − e

2m

[
|L|2 + 2|S|2 + 3L · S

|J|

]
(5.70)

= − e

2m

[ |L|2 + 2|S|2 + 3
2 (|J|

2 − |L|2 − |S|2)
|J|

]
(5.71)

= − e

2m

[ |J|2 + 1
2 (|J|

2 + |S|2 − |L|2)
|J|

]
(5.72)

= − e

2m
|J|
[
1 +

|J|2 + |S|2 − |L|2

2|J|2

]
(5.73)

= − e

2m

√
j(j + 1)

[
1 +

j(j + 1) + s(s+ 1)− l(l + 1)

2j(j + 1)

]
(5.74)

= − e

2m

√
j(j + 1)g (5.75)

where the Landé g -factor

g ≡ 1 +
j(j + 1) + s(s+ 1)− l(l + 1)

2j(j + 1)
(5.76)
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A g -factor characterizes the magnetic moment and angular momentum of a quantum. It is essentially a
dimensionless proportionality constant that relates a magnetic moment to its associated angular momentum.
It is a measure of the relative energy splittings in weak magnetic fields.

5.9.8 Atomic Excited States

Electric dipole transitions from excited atoms are governed by the selection rules: ∆J = 0, ±1, although
J = 0 → J = 0 is not allowed; ∆L = 0, ±1, although if the transition involves just one electron, ∆L ̸= 0;
∆S = 0; and ∆MJ = 0, ±1, although if ∆J = 0, Mj = 0 → Mj = 0 is not allowed. Other, weaker
transitions may occur, as well.

5.9.9 Anomolous Zeeman Effect

Semiclassically, the normal Zeeman effect is seen as the atomic magnetic moment µ precessing about an
external magnetic field B. The stronger the field, the faster the precession and the greater the split. If the
L ·S interaction is stronger than the interaction of either L or S with B, then L and S precess rapidly about
J, such that µ precesses more rapidly about J than about B, giving rise to the anomolous Zeeman effect,
whose strength depends on the component of µ along J, producing more than three spectral lines.



Chapter 6

Nuclear Physics

6.1 Introduction

No theory of the nucleus exists, unlike the case, for example, of the hydrogenic atom. Spectroscopy makes
clear that nuclear energy levels exist, indicating the quantum-mechanical nature of nuclear phenomena.
Despite the development of a field theory (QCD) for the strong (nuclear) interaction, the many-body com-
plications inherent in the nucleus have precluded a satsifactory application of it to nuclei. A number of
models, each describing a limited range of properties, some perhaps employing approximations to QCD,
have been developed.

The characteristic energies of atomic phenomena are on the order of eV. For nuclei, they are on the order
of MeV. Atoms are therefore easily excited, and readily combine into molecules and crystals. Nuclei, on the
other hand, excite only in very special circumstances.

6.2 Basic Properties of Nuclear Ground States

6.2.1 Structure

Nuclei are composed of nucleons: protons and neutrons. Protons have exactly the same magnitude of charge
as electrons, but with opposite sign, and a mass about 1800 times larger. Neutrons are very slightly more
massive than protons and have no net charge.

The number of protons in a nucleus is identified with the atomic number, Z, while the number of neutrons,
N , is the difference between the mass and atomic numbers, N = A−Z. Equivalently, the atomic number is
the sum of the numbers of protons and neutrons, A = Z +N .

Nuclear structure is summarized symbolically as

A
ZX (6.1)

where X is the chemical symbol for an element.
About 80% of the roughly 1500 known nuclei are unstable. In nuclei with small A, N ≈ Z. As A

increases, nuclear stability requires N to increase at a greater rate than Z, because the repulsive Coulomb
force between protons pushes them farther and farther apart. Proton matter is less dense than neutron
matter, so that as A increases, there are more neutrons than protons per nuclear volume.

71
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Isotopes are nuclei with the same number of protons, Z. Isotones have the same number of neutrons, N .
Isobars have the same mass number, A. Isomers have the same number of protons Z and same mass number
A.

6.2.2 Mass

Nuclear masses are conventionally expressed in unified mass units, u =
m12

6 C

12 = 1.660539 × 10−27 kg, or
1 u = 931.48 MeV. In these units, the proton mass, mp = 1.007277 u, the neutron mass, mn = 1008665 u,
and the electron mass, me = 0.0005486 u. Notice that carbon’s atomic mass is less than the sum of its
constituent protons (6), neutrons (6), and electrons (12), a manifestation of the relativistic equivalence of
mass and energy (in this case binding, or potential, energy).

The natural mixing of isotopes in any sample renders chemical determinations of atomic wights uncer-
tain. Mass spectrometry, which measures the mass-to-charge ratio, is perhaps the most accurate method to
determine nuclear masses.

Figure 6.1: Mass spectrometer or velocity selector

Mass spectrometry works as follows:

1. Ionize the element or compound (with electrical discharge or evaporation from a hot filament).

2. Accelerate the ions in an electric field to a uniform kinetic energy and collimate.

3. Select velocities using crossed electric and magnetic fields (qEvs = qvBvs ⇒ v = Evs

Bvs
) and pass only

undeflected particles.

4. Record positions of particles interacting with a detector after they curve in a uniform magnetic field:

qvB =
mv2

r

r =
m

q

v

B

m

q
=
rBBvs

Evs
(6.2)
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Note that this technique results in atomic (or molecular) masses, rather than nuclei masses.
In this way, mass spectrometry can determine the relative abundance of each isotope of an element. The

term natural abundance refers to the fractional distribution of an element’s isotopes resulting from natural
processes on, say, a planet. Atomic weight is the average mass of all an element’s isotopes weighted by the
abundance. Isotope abundance varies among planets, and even by location on a planet, but, on a short
time scale, remains relatively constant. The natural abundance is determined by the creation probability in
nucleosynthesis, production rates from natural radioactivity, and the relative stability of the various isotopes.

6.2.3 Charge

Isotopes of an element are nearly indistiguishable chemically. We conclude that the nuclear charge determines
the gross properties of an element. The nuclear charge is positive, and its magnitude is Z times the charge
magnitude of an electron, where Z, is, to the limit of experiment (< 10−15), an integer.

6.2.4 Strong Nuclear Force

All nuclei, then, are positively charged: all–other than hydrogen–contain more than one proton. How can
there then be nuclei? Shouldn’t Coulomb repulsion make multi-proton nuclei impossible?

The Coulomb interaction falls off as the square of the separation between charged partcles, but extends
to infinity.

An interaction, referred to as the strong or strong nuclear interaction, keeps nuclei together. It must be
attractive within nuclei and at least 100 times stronger than the Coulomb interaction (because there are
stable atoms with around 100 protons). Not apparent outside the nucleus, the interaction should become
infinitesimal beyond a distance of around a nuclear diameter. On the other hand, protons don’t swallow
one another in the nucleus, so this intra-nuclear interaction must be repulsive at distances smaller than a
nucleon radius.

Figure 6.2: One model of the strong nuclear force as a function of nucleon separation; the Coulomb force is
indicated, as well

Within nuclei, this interaction must occur not only between protons, but between neutrons and between
protons and neutrons as well. Such a many-body problem is difficult to solve explicitly. The curve represents
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one of many phenomenological models trying to account for experimental results.
The curve shows that the nuclear force has short range, its strength rapidly decreasing with particle

separation. At distances greater than 1 − 2 fm, it becomes insignificant; within the nuclear volume, it
holds protons together despite the repulsive Coulomb force. It appears to be independent of electric charge:
neutron-neutron, neutron-proton, and proton-proton nuclear interactions are approximately equally strong.
It is the only fundamental interaction that saturates, which it does in the case that a nucleon is completely
surrounded by other nucleons; nucleons located beyond the surrounding nucleons do not interact with the
surrounded nucleon.

The nuclear force tightly binds nucleons. Given the dual attractive-repulsive form of the force, the nucle-
ons must be in very close proximity, seeming to stick to one another as if under the influence of a “contact”
potenitial. It is, in fact, useful in describing some nuclear behaviors to model nucleons as constituents of
an incompressible fluid whose motions are correlated with those of all neighboring constituents. However, it
can be just as useful in interpretting nuclear behavior to assume that constituent nucleons move completely
independently, albeit in an apparently constant potential formed by the attraction of nearest, in-contact,
neighbors. Surface nucleons have fewer neighbors, and are thus less tightly bound. All this suggests that
nuclei tend to be spherically shaped.

6.2.5 Binding Energy

Because of the energy required to hold nucleons together, the nuclear mass Mnuc = A − Zme is less than
the sum of the component nucleon masses.

Ebinding = Zmp +NmN −Mnuc (6.3)

Binding energy, Ebinding is the manifestation of the potential well nucleons experience in a nucleus. This
energy is released in formation, typically as photons, and it is the threhold energy for breaking a stable nucleus
into its constituent nucleons. If Ebinding < 0, the nucleus is unstable and will spontaneously disintegrate.

Figure 6.3: Binding energy per nucleon as a function of atomic mass

If each nucleon attracted every other nucleons equally, the binding energy per nucleon would increase
with A. That it does not is in part because the nuclear interaction’s range is short and saturates.
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Binding energy increases–rapidly–with increasing A < 60. In this range, in fact, the fusion of nuclei
is energeticaly favorable. Conversely, for A > 60, fission is energeticaly favorable. Other factors (to be
discussed) prevent everything in the universe from becoming iron, cobalt, nickle, and copper.

Even numbers correlate with stability. Stable nuclei tend to have both even Z and N . Two nucleons of
the same species can pair tightly in a particularly strong attraction, significantly increasing the total nuclear
binding energy.

The binding energy per nucleon is between a thousand and a million times greater than the electron
binding energy in an atom, which is of the order of electron volts for the valence electron and of the order
of keV for inner electrons.

6.2.6 Nuclear Radius

The boundaries of nuclei are indefinite. For example, electron scattering experiments find a range of cross-
sections. Taking the mean of these, and modeling nuclei as spheres of positive charge, the root mean square
of the radius is calculated, since the nuclear cross-section is proportional to the square of the radius.

An upper limit on the size of the nucleus can be given by the head-on repulsion of a low-mass projectile
by a high-mass nucleus. In the famous scattering experiments by Hans Geiger and Ernst Marsden, under
the supervision of Ernst Rutherford (1910), a collimated beam of alpha (α) radiation [helium nuclei (Z = 2)]
was aimed at a very thin sheet of gold (Au; Z = 79). The α particles of such a beam have a well-defined
kinetic energy, ranging from roughly 5 MeV from decays of 226Ra to approximately 7 MeV from decays of
214Po. That even a small number (∼ 10−4) of them scattered essentially straight back to their source meant
that they were encountering a tiny but massive object. Because there was no indication of anything breaking
apart, the scattering must have been elastic and most likely due to electrostatic repulsion. The interpretation
is that, as they they approach Au nuclei, the kinetic energy of the alpha particles transforms into potential
energy. At some distance from the nuclei, the direction of motion is reversed and the particles accelerate
back the way they came. This distance of closest approach, b, can be estimated using energy conservation:

Kα =
qαqAu

bAu

bAu =
qαqAu

Kα
(6.4)

Plugging in all the known quantities, bAu ≈ 3×10−14 m = 30 fm. Similar experimental results were achieved
with silver (Ag; Z = 47) foil, for which calculation gives bAg ≈ 2× 10−14 m = 20 fm.

To measure the radius, rather than estimate its upper limit, requires probes that reach the nuclear surface,
that is, probes with more kinetic energy.

The de Broglie wavelength of an 100-MeV electron, for example, is around 2 fm. If a beam of these is
sent through a thin foil, a circular diffraction pattern forms on the screen behind.

The scattering amplitude:

F (ki,kf ) ∝
〈
eikf ·x

∣∣V (x
∣∣eiki·x

〉
=

∫
dxV (x)ei(ki−kf )·x

=

∫
dxV (x)eiq·x ≡ F (q) (6.5)
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where q = ki − kf is the momentum transfer. Note that the scattering amplitude is the Fourier transform
of the potential.

A Coulomb-like, radially symmetric potential with a fixed center has the form

V (x) = −Zα
∫
dx′ ρp(x

′)

|x− x′|
(6.6)

where α = e2

4π and ρp(x
′) is the proton number density such that

1 =

∫
dx′ρp(x

′) (6.7)

is the normalization condition.
Then

F (q) ∝ −Zα
∫
dx

∫
dx′ ρp(x

′)

|x− x′|
eiq·x (6.8)

and we set F (0) = 1 (no effect when no momentum transfer).
The result takes the form

F (q) ∝ −Zα
∫
dxρp(x)e

iq·x (6.9)

The (charged) scattering amplitude is the Fourier transform of the charge distribution.
If the charge distribution is indeed spherical, then, switching to spherical polar coordinates and choosing

the reference frame such that q = qẑ and ρp(x) = ρp(r)

F (q) ∝
∫ 2π

0

dϕ

∫ ∞

0

r2drρp(r)

∫ π

0

sin θdθeiqr cos θ (6.10)

=
4π

q

∫ ∞

0

rdrρp(r) sin qr (6.11)

Scattering from a spherical or circular obstruction creates a circular interference pattern just like diffrac-
tion through a circular aperture. The intensity distribution of this pattern is given by the squared modulus
of the Fourier transform of a circular aperture of radius a:

I(θ) = I0

(
2J1(ka sin θ)

ka sin θ

)2

(6.12)

where I0 is the maximum intensity of the pattern at the (Airy) disc center, J1 is the Bessel function of the
first kind of order one, k = 2π

λ is the wavenumber, and θ is the angle between the axis of the circular aperture
and the radius of interest in the pattern.

The zeros of J1(x) are approximately 3.8317, 7.0156, 10.1735, 13.3237, 16.4706, etc. The first minimum
(dark ring) of the diffraction pattern occurs where ka sin θ = 3.8317 . . ., or

sin θ ≈ 3.83

ka
=

3.83λ

2πa
= 1.22

λ

2a
= 0.61

λ

a
(6.13)

A uniform charge distribution, such as
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ρp(r) ∝
Θ(R− r)

4
3πR

3
(6.14)

would yield an interference pattern:

Figure 6.4: Interference pattern resulting from a circular charge distribution of uniform density

The lobes correspond to the shape of the nucleus, while the minima are characteristic of the edges. The
sharp edge to the distribution yields minima of zero. Experiments do not yield zeroes, indicating “fuzzier”
edges.

(a) Electron diffraction pattern
(b) Nuclear radius as a function of
atomic number (c) lnRvs lnA

Figure 6.5: Determining nuclear radii

Such measurements over a range of atomic numbers can be summarized empirically by

R = r0A
1/3 (6.15)

6.2.7 Density

Different types of radius measurements give different results, in part because each measures a different thing.
Electron scatter probes the Coulomb charge radius. Neutron scattering probes the strong or nuclear force
radius. Spectroscopy measures corrections due to finite nuclear size of Schrödinger wave equation predictions,
which assume a point nucleus. Charge distribution studies give r0 ≈ 1.2 fm, while mass radius calculations

R =

√
Zr2p +Nr2N

A
(6.16)

gives r0 ≈ 1.4 fm.
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Figure 6.6: Nuclear charge density versus radial distance

Taken together, these results imply a tail in nuclear density distribution rather than a sharp edge,
approximated reasonably well by the Woods-Saxon formula:

ρ(r) =
ρ(0)

1 + e(r−R)/a
(6.17)

where R is the width at half max, and a represents the so-called skin thickness, t,

t = 4a ln 3 (6.18)

Note that the core nuclear mass density is approximately the same in all nuclei.

ρ =
mNA
4
3πR

3
=

mNA
4
3πr

3
0A

=
mN
4
3πr

3
0

(6.19)

independent of Z and A.
This gives a density of around 2 × 1017 kg/m3, about 1012 times that of the core of the sun. The mass

of a teaspoon (5 cm3) of nuclear matter is about 1012 kg (a few billion tons).

6.2.8 Nuclear Angular Momentum

Spin

As indicated by, for example, the hyperfine structure of atomic spectral lines, nuclei possess spin angular
momentum and magnetic moments.

Nucleons are fermions, spin- 12 particles, and so subject to the Pauli Exclusion Principle: no two nucleons
of the same species may be described by the same set of quantum numbers.

Therefore, analogously to the “stacking” of electrons in atoms, nucleons, in forming a nucleus, occupy
subshells of increasingly energetic quantum shells. As is the case of orbital electrons, no more than two
nucleons of a given species, with opposite spin, can occupy a given subshell. In distinction from the atomic
case, the potential in this case is due only to other constituent nucleons.

This process is constrained by the empirical facts that a purely neutronic bound state is impeded by the
Pauli Exclusion (the only known counter example is the existence of neutron stars, in which the binding
energy of the gravitational potential is sufficient to form uniform neutron matter), and a purely or even
largely protonic bound state is impeded also by Coulomb repulsion. While low-mass nuclei are formed
stably when the numbers of protons and neutrons are about equal, stable formation of more massive nuclei
require additional neutrons to separate protons.
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A pair of neutrons will not bind, but only barely. A proton and a neutron will bind (deuteron), but
only barely. Deuteron physics is somewhat complex. Its spin and total angular momentum are each 1, but
its orbital angular momentum is in a superposed state [96% S (L = 0); 4% D (L = 2)], and its electric
quadrupole moment is non-zero (it is not spherical), all related to the binding interaction having a non-
central component. An alpha particle is tightly bound, but there are no stable A = 5 nuclei. The half-life
of 5

2He is 7.9 × 10−22 s, while that of 5
3Li is about 3 × 10−22 s. In both cases, the odd nucleon has time for

only a few nuclear transits before escaping.

Total Nuclear Spin

Total nuclear spin, denoted I = L + S, can take integer or half-integer values, the result, as is that of the
total magnetic moment, from the vector addition of intrinsic spins and moments of the constituent particles.
As we’ll see when we discuss nuclear models, explaining measured values is a challenge. The total atomic
spin is denoted F = I+ J.

Magnetic Moments

Nuclear magnetic dipole moments result from the intrinsic magnetic dipole moments of constituent protons
and neutrons, and also from the motion of protons. The velocities of nucleons in a nucleus range between
β = 0.001 − 0.1, and can be envisioned as thrashing around in close contact. If we consider them to be
point-like,

µl = |µL| = gll|µN | (6.20)

where gl is the gyromagnetic ratio, l is the orbital angular momentum quantum number, and µN is the
nuclear magnetron. gl = 1 for protons and 0 for neutrons.

|µN | = e

2mp
≈ 10−3|µb| (6.21)

Similarly for the spin angular momentum

µs = |µS | = gss|µN | (6.22)

There is no theory for nucleon gs like QED is for gs of the electron. The measured values are gps ≈ 5.6
and gNs ≈ −3.8. That gps is quite different from 2 means that the proton is a compound object. That gNs is
quite different from 0 means not only that the neuton is a compound object but also that it is comprised of
charged objects distributed such that positive charge concentrates at the core and negative charge tends to
the extremity.

The interaction of these dipole moments with the magnetic fields of atomic electrons results in atom
energy level hyperfine splitting, depending on their relative orientation. Measurements of this splitting show
that they are in some cases parallel and in other cases anti-parallel. When both A and Z of a nucleus are
even, µN = 0.

Quadrupole Moment

The existence of a (an electric) quadrupole moment indicates non-sphericity.
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Q =
1

e

∫
V

(3z2 − r2)ρ(x, y, z)dτ (6.23)

where r2 = x2 + y2 + z2.
Consider, for example, a nucleus of Z protons (and A− Z neutrons) as an ellipsoidal volume symmetric

about one axis (call it the z-axis) so that the other axes x and y (semi-major/minor) are equal:

x2 + y2

a2
+
z2

c2
= 1 (6.24)

within which the charge distribution is uniform ρ(x, y, z) = constant. In this case, the volume of the ellipsoid
is V = 4

3πa
2c, so

ρ(x, y, z) =
Ze

4
3πa

2c
(6.25)

Then, setting R2 = x2 + y2 ⇒ r2 = R2 + z2, and integrating in cylindrical coordinates (volume element
dτ = RdRdzdϕ),

Q = 2
1

e

Ze
4
3πa

2c

∫ 2π

0

∫ a

0

∫ c
a

√
a2−R2

0

(2z2 −R2)RdRdzdϕ

=
3Z

a2c

∫ a

0

∫ c
a

√
a2−R2

0

(2z2 −R2)RdRdz

=
2Z

5
(c2 − a2) (6.26)

Assume an average radius R̄ =
3
√
a2c and c ≈ a, so that c = R̄± δR, with δR≪ R̄, then

a2 =
R̄3

c
≈ R̄2

(
1− δR

R̄

)
(6.27)

so that

c2 − a2 ≈ R̄2

{[
1 + 2

(
δR

R̄

)]
−
(
1− δR

R̄

)}
= 3R̄2

(
δR

R̄

)
⇒ Q ≈ 6Z

5
R̄δR (6.28)

One way to measure a nuclear electric quadrupole moment is via a technique called Mössbauer absorption
spectroscopy. A pure sample of an element is immersed in a non-uniform electric field and exposed to a beam
of gamma radiation emitted by the same isotope type as the sample. If the emitting and sampled nuclei were
spherical, the nuclear transition energies would be exactly equal and resonant absorption would be observed
with both materials at rest. The linear motor of a Mössbauer apparatus accelerates the source through
a range of velocities, allowing a gamma ray energy scan via the Doppler effect. The intensity of gamma
rays passing through the sample is recorded as a function of source velocity. At velocities corresponding to
resonant energy levels of the sample, absorption increases, so the intensity drops, indicated by a dip in the
spectrum.

Nuclei with I > 1
2 appear non-spherical: their Mössbauer spectra exhibit, as dips, hyperfine splitting,

removing the degeneracy among total spin projections Iz. The separation between dips indicates the mag-
nitude and orientation of the nuclear charge distribution. If the quadrupole moment is found to be positive,
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Figure 6.7: Sample Mössbauer absorption spectrum

then the ellipsoidal nucleus is prolate in the chosen field orientation. If it is negative, then the nucleus is
oblate.

Figure 6.8: Oblate and prolate spheroids

What then is the relationship with I? Spinless nuclei have no total angular momentum vector that must
maintain a fixed orientation in space, and so their orientation is a superposition of all possible orientations.
Even if they were non-spherical, such nuclei would not exhibit hyperfine splitting in an oriented electric field
due to the potential shifts averaging out. We’ll see later that measurements of nuclear reactions can clarify
the shape of I = 0 nuclei. As for I = 1/2 nuclei, they can assume only two orientations relative to an applied
electric field. The interaction energies of the two orientations are equal, so the orientations are equally likely
and the average energy split is zero, precluding the possibility of deducing non-sphericity in these kinds of
measurements.

The rare earth elements (scadmium, yittrium, and the lanthanides) exhibit the largest Q values, the
largest a prolate distribution in which c is 30% larger than a. On the other hand, I = 0 for more than half
of all nuclei, and, even for I > 1 nuclei, the dimensions typically differ by no more than a few percent. For
most purposes, then, the assumption of nuclear sphericity is an adequate approximation to the actual state.

6.3 Models

A successful model must be able to account for experimental results, for example, from scattering exper-
iments. The scattering projectiles must have high kinetic energy, so that they can probe objects on the
size of a nucleus, by E = hc/λ. As the nucleus occupies only 10−4 of an atom’s volume, most projectiles
pass through with their trajectory undeviated, but the distribution of scattering angles (differential cross-
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sections: counts of particles scattering at specific angles) is evidence models have to describe, along with
masses, stability, energy levels, and magnetic moments.

6.3.1 Liquid Drop Model

The liquid drop model is the oldest of still relevant nuclear models, and the most classical, but not completely
so. It is premised on an analogy with an incompressible drop of liquid whose density is constant, and whose
size and heat of vaporization (analogous to the binding energy) are proportional to its mass, or, equivalently,
the number of its constituents. As we’ve seen, nuclear interior mass densities are approximately the same
and nuclear binding energies are approximately proportional to their masses since ∆E/A ≈ constant.

The liquid drop model pictures the nucleus as a sphere of uniform density which reduces to zero at its
surface. By construction, the size (volume) of the nucleus is proportional to the number of nucleons, A, and
so, consequently, density = mass/volume ∝ A/A = constant, as indicated by experiment. Furthermore, the
surface area is therefore proportional to A2/3, and the radius is proportional to A1/3.

Because the nuclear interaction is attractive, a positive binding energy (positive work must be done to
separate nucleons) due to it reduces the nuclear mass by an amount proportional to the number of nucleons,
A, which, for an incompressible drop, is equivalent to the volume: −aVA (aV > 0), where aV , like the
other proportionality constants to be introduced, must be determined empirically. Actually, alone of these
constants, aV can be estimated with QCD. This contribution assumes that every nucleon is surrounded
by the same number of nucleons, which, of course, is not the case for those near the surface, which are,
consequently, less tightly bound.

This “surface” effect increases the mass in proportion to the number of nucleons at the surface, aSA
2/3.

The Coulomb energy between protons also decreases the binding energy (increasing the mass), by EC ∝
Z2/R = Z2/r0A

1/3 ∝ Z2/A1/3, and therefore increases the mass by aCZ
2A−1/3.

Two quantum mechanical effects increase the mass, as well. An excess of protons over neutrons or
neutrons over protons increases the mass in proportion to the excess or asymmetry, aA(N − Z)2A−1 =
aA(A − 2Z)2A−1, due to the Pauli Exclusion Principle. Further, a so-called pairing energy, resulting from
the tendency of neutrons or protons of opposite spin to group together, increases the mass as aP δ(A,Z)A

−1/2

(empirically; older versions of this model set the A-dependence A−3/4) with the number of unpaired nucleons
(δ(A,Z) = +1 if both A and Z are even; 0 if A odd; and −1 if A is even but Z is odd).

Summing all these contributions results in a semi-empirical approximate mass formula

M = Zmp + (A− Z)mn − aVA+ aSA
2/3 + aCZ

2A−1/3 + aA(A− 2Z)2A−1 + aP δA
−1/2 (6.29)

The average binding energy per nucleon (not the energy required to remove a single nucleon) is then

∆E

A
=

[Zmp + (A− Z)mn −M ]

A
= aV − aSA

−1/3 − aCZ
2A−4/3 − aA(A− 2Z)2A−2 − aP δA

−3/2 (6.30)

an approximately constant value (of 8 MeV) for large A, as we’ve seen.

6.3.2 Fermi Gas Model

Based on the free-electron gas model of conduction electrons in a metal, the Fermi gas model assumes that
nucleons move in an attractive net potential of constant depth equal to the average interaction with other
nucleons. The potential goes to zero within a distance equal to the range of nuclear forces. The net potential,
then, approximates a three-dimensional finite square well of radius a little larger than the nuclear radius.
The ground state minimizes the total energy without violating the Pauli Exclusion Principle.
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Figure 6.9: Contributions to the binding energy according to the liquid drop model (semi-emprical mass
formula)

Since protons and neutrons are distinguishable, the Exclusion Principle treats them independently.

Figure 6.10: Neutron and proton energy levels in the Fermi gas model, without (left) and with (right)
accounting for Coulomb repulsion

For a given value of A, at least for small A, the total energy of the nucleus is minimized if energy
levels are filled with Z = N ; otherwise, they’d occupy higher levels of energy. Through beta decay, a
nucleus can adjust its N and Z values to approach Z = N , while maintaining A = N + Z. This idea is
quantified in the asymmetry term of the semiempirical mass formula, (Z−A/2)2A−1, which is minimized for
Z = A/2 = N . Yet, stability requiresN > Z for large A, and the factor A−1 appearing in this term minimizes
the contribution of the term, coinciding with the fact that the spacing between levels of a three-dimensional
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potential well decrease with A. In sum, the asymmetry contribution decreases with A.

Figure 6.11: Nuclear fermi-energy levels; EF ∝ ρ2/3 (number density)

Because essentially every energetically accessible state is filled, the only possible collision is that in which
two nucleons of the same type exchange quantum states, which, effectively, is not a collision. The few
nucleons in partly filled degenerate states at the Fermi energy, can collide with one another, but this is a
small fraction of the nuclear population. The conclusion of this picture is that, in a ground-state nucleus,
nearly all nuclear constituents can move independently.

6.3.3 Shell Model

Considering the nucleus as a collection of individual nucleons in a potential well, as described in the Fermi
Gas model, suggests inserting a potential into Schrödinger’s equation to determine, for example, energy
states. Evidence supporting such an approach is given by the existence of so-called magic number states,
particularly stable nuclei with N or Z = 2, 8, 20, 28, 50, 82, 125. The nucleons that complete these ”shells”
have high binding energies, while the energies of the first excited states are larger than those of nuclei with
similar, but not magic, nucleon counts.

This calls to mind the atomic shell model, and an analogous nuclear model has been constructed. This
model pictures the short-range nuclear interaction not as a symmetrical central potential, but as a three-
dimensional well, which acts as a restoring potential, like a three-dimensional harmonic oscillator, with
potential energy of the form

U =
1

2
kR2 =

1

2
mω2R2 (6.31)

and consequent energy levels

En,l = [2(n− 1) + l]ω (6.32)

Here n, called the radial node quantum number, does not have the same meaning as n in the atomic case.
Rather, it simply specifies the number of nodes of rR in the well, where rR is the product of the radial
coordinate r with the radial dependence R of the eigenfunction. One implication of this is that the orbital
angular momentum l is not limited by n. Note how increasing orbital angular momentum decreases the
likelihood of r = 0, a sort of centrifugal effect.

Note also that |rR|2 is proportial to the radial probability density.

In spectroscopic notation
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Figure 6.12: Nuclear wave functions in a shell model

value of l: 0 1 2 3 4 5 . . .
symbol: s p d f g h . . .

The order (with respect to increasing energy) is shown by

prefixing the value of n to the symbol for l.
It all works out pretty neatly, except that it doesn’t get it right: there is no form for V(r) which leads

even to the ordering of the nucleon energy levels required to explain the magic numbers.
To account for the observed magic number, a spin-orbit (l · s) interaction must be included. Because

s = 1/2, angular momentum states l are split into two orbitals, i = l + 1
2 and i = l − 1

2 . The orbit is
indicated symbolically by post-subscripting i. Each orbit contains a maximum of 2i + 1 nucleons, and the
Pauli exclusion principle excludes two nucleons with the same (n, l, i, mi) quantum numbers. Shell closings
correspond to the magic numbers. The relative energy splitting goes as

l · s = 1

2
[i(i+ 1)− l(l + 1)− s(s+ 1)] =

{
l
2 i = l + 1

2

− l+1
2 i = l − 1

2

(6.33)

The absolute energy splitting, l+ 1
2 , increases with l. The energy of the i = l+ 1

2 orbit is lower than that
of the i = l − 1

2 orbit, a situation referred to as inverted.
The order in which the nuclear levels appear below the Fermi energy as the nuclear potential radius

increases (∝ A1/3) is given, at least for nuclei up to about A = 184, by the acrostic

spuds if pug dish of pig

that is,

spdsfpgdshfpig

and then applying the (inverted) spin-orbit splitting proportional to l.
Nucleons tend to pair up to form zero angular momentum states: even-even nuclei have zero total angular

momentum, nuclei with odd numbers of protons or neutrons have total angular momentum and parity [(−1)l]
due to the angular momentum of the last (odd) nucleon, while for odd-odd nuclei the parity is the product
of those of the two odd nucleons, but the spin assignment is complicated.

This pairing interaction is a residual interaction not described by the shell-model net potential or the spin-
orbit interaction. It amounts to a kind of collision, which reduces the energy of the system because they are
close together. Being attractive, the coupling tends to be antiparallel: because nucleons are fermions, two of
the same species must be described by an antisymmetric total eigenfunction, they are closer together if their
spins are antiparallel and if their orbital angular momenta are also antiparallel, moving in opposite directions
in the same orbit, as it were. This leads to the tendency for Z and N to be even and to the semiempirical
mass formula’s pairing term. This can lead to exceptions in ground state nuclear spin assignments and filling
order.

This all works out quite nicely for energy levels and nuclear spins and parities. Because these are
quantized, the assumptions underlying the pairing interaction do not have to be strictly met. This is not
the case for multipole moments, whose magnitude need not be quantized.
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6.3.4 The Collective Model

The collective model tries to combine features of the liquid drop and shell models, and by so doing provides
a discription of multipole models. It does this by assuming nucleons in unfilled shells move independently
but that the potential is not fixed, rather the nucleus undergoes shape deformations in accordance with
correlated nuclear motions.

The deformations arise from the attractive interaction between the core and the independent nucleons,
similar to tidal effects. As the independent nucleons move, so does the bulging, producing a magnetic dipole
moment which can interact with an independently moving proton.

Since protons tend to populate the outer regions of the nucleus more than do neutrons, the tidal picture,
due to both protons and neutrons in the unfilled shells, leads also to a description of the nuclear quadrupole
moment discussed previously.

6.4 Decays and Reactions

Figure 6.13: Nuclear stability curve

Some nuclei, in excited or ground states, undergo transformations, either through emission of massive
particles [electrons (β−-decay), positrons (β+-decay), or helium nuclei (α-decay)] or through emission of
high-energy photons (γ-decay). All decay channels conserve charge, energy, linear and angular momentum,
and nucleon number.

6.4.1 Radioactive Decay Law

A decay transformation results in a nucleus in a lower energy state (γ-decay) or a new nucleus (α- or β-decay).
If, at t = 0 there are N0 unstable parent nuclei, then there will be

N = N0e
−λt (6.34)

parent nuclei remaining at later time t. This is the radioactive decay law, a statistical rather than deter-
ministic law: N is the expected number of surviving parents; Γ, called the decay or disintegration constant,
characteristic of the parent and the process, is the inverse of the average or mean lifetime τ = 1/Γ.

Another way to characterize the rapidity of the transformation is the half-life, also related to Γ:

1

2
= e−Γτ1/2 ⇒ τ1/2 =

ln 2

Γ
(6.35)



6.4. DECAYS AND REACTIONS 87

and τ = τ1/2/ ln 2.
The disintegration rate is also known as the activity:∣∣∣∣dNdt

∣∣∣∣ = ΓN0e
−Γt = ΓN (6.36)

As the number of parent nuclei decreases, the number of daughter nuclei increases, if stable: N+ND = N0.
So,

ND = N0 −N = N0(1− e−Γt) (6.37)

Typically, several related radioactive nuclei decay successively, so in nature one finds a standard mixture
of nuclei. On the time scale of its lifetime, the parent population decreases exponentially, but, on the usually
much shorter daughter lifetime time scale, the number of parents remains approximately constant, so the
first daughter formation rate seems contant. Since they decay rapidly, the first daughter population is due
entirely to parent decay rate, so the first daughter population remains constant. Similarly for the second
daughters, and so forth: the populations of the parents and succeeding generations remain constant on time
scales much shorter than the parent lifetime, approaching an equilibrium condition:

NPΓP = ND1ΓD1 = ND2ΓD2 = · · · (6.38)

6.4.2 Alpha Decay

Alpha decay occurs commonly in nuclei with atomic number greater than Z = 82. It involves the emission
of an α-particle–a helium nucleus–resulting in a different chemical element from the parent, one with an
atomic mass reduced by four units and an atomic number reduced by two units.

A
ZP →A−4

Z−2 D +4
2 He (6.39)

The decay will occur spontaneously when the mass of the parent nucleus is greater than the mass of the
daughter nucleus plus the mass of a helium nucleus. The total energy released in a decay, or the disintegration
energy,

Q =MZ,A − (MZ−2,A−4 +M2,4) =MP − (MD +Mα) (6.40)

arises primarily from a reduction in the Coulomb energy of the nucleus when its charge Ze is reduced by
charge 2e. Energy conservation implies that

MP =MD +Mα +KD +Kα (6.41)

where K is kinetic energy. So Q is an invariant quantity, which, in the parent rest frame, is measured as

Q = KD +Kα (6.42)

α-decay is a two body reaction, and momentum conservation along with energy conservation uniquely
fixes the momentum and kinetic energy of the daughter nucleus and α-particle for a given parent nucleus.

Note that α-decay energies and lifetimes are inversely related (note log scale). The energies range from
8.9 MeV for 212

84 Po to 4.1 MeV for 232
90 Th, perhaps a surprising small range and low values.

To explain, consider the 212Po→208 Pb+4He decay, and let’s calculate the Coulomb repulsive potential
when the two daughters are just touching. We approximate the lead nucleus and the α particle as uniformly
charged spheres

V0 =
ZPbZHeα

r′
(6.43)
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Figure 6.14: α-decay half-lives versus α-particles’ kinetic energy

where ZPb = 82, zHe = 2, and α = 1/137 is the fine structure constant. r′ is the distance between the
centers of the lead and helium nuclei. Recall that

R = r0A
1/3 (6.44)

where r0 ≈ 1 fm ≈ 5 GeV−1, so r′ ≈ 5 × (41/3 + 2081/3) ≈ 40 Gev−1. Plugging in all values, then, gives
V0 ≈ 0.03 GeV = 30 MeV. Rutherford learned that the distance of closest approach of a 9 MeV α particle
to a nucleus was 20 - 30 fm. The α particle feels the repulsive Coulomb potential increasing in inverse
proportion to the distance between its center and that of the target nucleus. We just calculated that it
would take 30 MeV of kinetic energy to reach the surface of the nucleus. Inside the surface it feels a rapid
onset of the strong attractive nuclear potential, which soon dominates.

Figure 6.15: Coulomb barrier to α emission
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So, why does the free α particle have less than 9 MeV of kinetic energy? To put the question another
way, if a 9 MeV α particle is Coulomb repelled roughly 20-30 fm from the center of a 10 fm-radius nucleus,
how does an α particle within the nucleus get out? The answer to these questions proved to be one of the
early successes of quantum mechanics: barrier penetration (tunneling).

The quantum mechanical probability (flux) that a wave function can penetrate a potential barrier is
given by the transmission coefficient:

T =

1 +
(
e
√

2m(V0−E)a − e−
√

2m(V0−E)a
)2

16 E
V0

(
1− E

V0

)

−1

∝ e−2
√

2m(V0−E)a (6.45)

since
√
2m(V0 − E)a≫ 1.

This, of course, is the result for a rectangular barrier, but the Coulomb barrier can be modeled as a sum
of rectangular barriers with decreasing heights, given by a Coulomb potential:

T ∝ e−2
∫ r′′
r′

√
2m(V (r)−E)dr (6.46)

where now r′ is the nuclear radius to the barrier maximum and r′′ is the distance at which V (r) < E.
T is the instantaneous probability that an α particle with kinetic energy E trapped in a nuclear potential

will penetrate a Coulomb barrier V0 > E. We can imagine that such an α particle will be jostling around
inside the nucleus and will periodically ‘test’ the barrier. The rate of such tests would depend on the particle’s
velocity and distance from the barrier:

N ≈ v

2r′
(6.47)

This would give a decay rate (penetrations per second) of

Γ ≈ v

2r′
e−2

∫ r′′
r′

√
2m(V (r)−Edr (6.48)

and

τ =
1

Γ
(6.49)

V0 and r′ are roughly the same for Z > 82 nuclei, so the variation in Γ among the α emitters is primarily
related to the α energy.

Now, τ(212Po) ∼ 10−6 s. How could there be any in nature? Short lifetime α emitters are in decay
equilibrium families of lifetime parents. Such families are referred to as radioactive series, of which three can
still be found in nature: 4n (Thorium; parent: 232

90 Th, τ = 2.01× 1010 yr), 4n+ 2 (Uranium; parent: 238
92 U ,

τ = 6.52× 109 yr), and 4n+3 (Actium; parent: 235
92 U , τ = 1.02× 109 yr. The series names refer to the mass

numbers of the elements in the series. For instance, the parent of the 4n+3 series has A = 235 = 4 ∗ 58+ 3.
Since α decay is the only radioactive process that changes A, the A of all daughters in a series is a factor of
4 less than that of the parent.

What about 4n + 1 (Neptunium) series? It does exist, but the lifetime of the parent, 237
93 Np, is only

3.25 × 106 yr, too short for any still to be present naturally. It can be produced artificially, and the
radioactive series has been shown to follow, although unlike the others, which cascade to lead, this series
cascades to 205T l (thalium). Note that 232Th cascades to 208Pb, 238U cascades to 206Pb, while 235U cascades
to 207Pb.
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6.4.3 Beta Decay

In the region of stability, plots of atomic masses MZ,A as a function of Z for fixed A are well described by
the semi-empirical mass formula, except near magic numbers. If A is odd, the plot is a parabola; if A is even,
there are two parabolas corresponding to the two possible signs of the semi-empirical mass formula’s pairing
term: a higher mass one when both Z and N are odd, and a lower mass on when both are even. These
curves cross cut the stability curve, specifying how mass increases as Z varies from its most stable value at
a given A. Clearly, for odd A, usually one, or at most two, values of Z are the most stable, while for even
A, two or occasionally three values of Z are stable. Nuclei with other than the most stable Z for a given
A, can become more stable by changing Z via one of three different β-decay processes: neutron-to-proton
conversion with the release of an electron and an electron anti-neutrino, proton-to-neutron conversion with
the release of a positron and an electron neutrino, and neutron-to-proton conversion with the capture of
an inner-electron (usually a K electron) and the release of an electron neutrino. In each case, A remains
unchanged, but Z changes by one unit, and a(n) (anti-)neutrino (ν) emerges as a decay product.

A
ZP → A

Z+1D + e− + ν (6.50)
A
ZP → A

Z−1D + e+ + ν (6.51)

e− +A
Z P → A

Z−1D + ν (6.52)

α and β decays are competing processes for unstable nuclei. In both cases, the decay rates are directly
related to the decay energy, as we’ve seen in the case of α decay. If an α decay would result in a nucleus far
from the stability curve, it’s energy would be small. But in this case, the β decay energy would relatively
large, and consequently so will its rate. However, there are cases in which the rates are comparable, and so
both processes occur with some comparable probability.

In β-decay, in terms of nuclear masses, and in the parent’s rest frame,

MP =MD +me +Ktotal (6.53)

so that

Q = Ktotal = (MP −MD −me) (6.54)

We will see that this kinetic energy is not uniquely the electron’s or positron’s.
In inner electron capture, in terms of nuclear masses, and in the parent’s rest frame,

MP +me =MD +Ktotal (6.55)

so that

Q = Ktotal =MP +me −MD (6.56)

is the kinetic energy of a mono-energetic neutrino, whose emission is followed by x-ray photons, characteristic
of the daughter atom, as outer electrons fill vacated inner levels.

In terms of atomic masses, if M(Z,A) > MZ+1,A, electron emission can occur. If MZ,A > MZ−1,A, then
electron capture can occur. If MZ,A > MZ−1,A + 2me, positron emission can occur. But notice that in this
circumstance, electron capture can also occur, while, on the other hand a range of atomic mass differences
exists in which electron capture is possible but positron emission is energetically forbidden. In fact, atomic
mass differences frequently fall in this range. As a result, the number of natural positron emitters is small.
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In all these processes, the decay energy Q is typically less than 1 MeV, but can vary between a small
fraction of 1 MeV to more than 10 MeV.

Figure 6.16: Kinetic energy spectrum of electons or positrons emitted in beta decay

Although people originally believed β decay to be a two-body process, the spectrum is clearly that of a
three- (or more-) body process. This was eventually settled with the introduction of neutrinos.

6.4.4 Gamma Decay

If an excited nucleus relaxes to a lower energy state by emitting a photon, called a γ-ray, the atomic and
mass numbers of the nucleus remain unchanged, and the photon has a definite energy corresponding to the
discrete difference between energy levels:

hν = E2 − E1 (6.57)

The frequencies (energies) of such photons are on average a thousand times higher than those of photons
emitted in atomic transitions.

In ordinary cases, γ-decay occurs either after a β-decay leaves a daughter nucleus in an excited state, due
to one or more selection rules preventing the energy-dependent tendency to transition to the ground state,
or else following neutron capture.

The rate at which a given transition occurs is the inverse of the respective lifetime. It can range from
around 10−8 to 1018 sec−1. In natural units, the rate is the natural width (full width at half-max) of the
excited state’s energy distribution (a Breit-Wigner distribution). According to the energy-time uncertainty
principle, if an excited state survives for the lifetime τ of the state, then its energy in the state can be
specified only within an energy range Γ

Γ =
1

τ
(6.58)

Excited states are, thus, not perfectly sharp. Rather, they are spread over an energy range of width Γ. So,
for example, an excited state with a typical lifetime of around 10−10 s has a width of about 10−5 eV, a very
small fraction of the typical γ energy of around 1 MeV. Excited nuclei that γ-decay rarely are long-lived,
but those that are are called isomers.

6.4.5 Nuclear Reactions

Nuclear reactions conserve total relativistic energy, linear momentum, angular momentum, charge, parity,
and the number of nucleons. These should be obvious, except for the fact that beta decay does not conserve
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parity. However, beta decay is not a nuclear reaction. It’s the prototypical weak interaction, which does not
conserve parity.

A reaction experiment is one in which a nucleus under study is bombarded with projectiles of known
characteristics, and final products are investigated. In the typical experiment, only particles other than the
residual nucleus are detected:

Projectile + Target Nucleus → Residual Nucleus + Detected Particle(s)

where the total number of nucleons and charge are conserved. An abbreviated notation is commonly used
for these reaction experiments:

Target(Projectile, Detected Particle(s))Residual Nucleus

Any stable nuclear particle can be a projectile or target. The number and type of emitted particles vary
broadly. The residual nucleus will likely be stable if its Z-to-A ratio is approximately the same as that of the
target nucleus. If this ratio is significantly smaller, the residual nucleus is usually radioactive, transforming
via electron β decay. If this ratio is significantly larger, the residual nucleus is also radioactive, transforming
via positron β decay or electron capture.

Nuclear reactors produce intense fluxes of neutrons, and are therefore used to produce radioactive
electron-emitting tracers. Cyclotrons produce intense fluxes of charged particles, and are therefore used
to produce sources of radioactive positron-emitting tracers or electron capturers.

Let’s consider the example of a proton projectile. Unless its trajectory happens to be in the direction
of the target nucleus’s center, the Coulomb potential, or, if it gets close enough, the nuclear potential, will
scatter it. Otherwise, it will probably collide with a nucleon part way through the nucleus, and, in a so-
called direct interaction, either it or the struck nucleon, but not likely (1%) both, may escape immediately,
carrying away most of the proton’s energy. At least one of the two nucleons is likely to be reflected back
into the nucleus at the nuclear surface, where the nuclear potential changes, as a light ray can be reflected
at the boundary between different indices of refraction. An internally-reflected nucleon will likely collide
with another nucleon, leading to a cascade of collisions. In this way, the energy of the reflected nucleon
is distributed as vibrational excitations among many nucleons, a state referred to as a compound nucleus.
No nucleon has sufficient excitation energy to escape the nuclear potential binding energy (8 MeV), but
the collective vibrations may lead to a large enough fluctuation in the energy sharing to allow a nucleon to
escape, assuming it is not internally reflected. Such fluctuations can lead to the ”evaporation” of several
nucleons, diminishing in the process the excitation energy of the compound nucleus. It will almost always
be neutrons that evaporate, since protons must also overcome the Coulomb barrier. When the excitation
energy falls below the neutron binding energy, the relatively slower process of γ decay eventually reduces
the system to its ground state.

Classifying Nuclear Reactions

Scattering: The projectile and detected particle are the same

Elastic Scattering: The residual nucleus is left in its lowest or ground state

Inelastic Scattering: The residual nucleus is left in an excited state

Pickup: The projectile gains nucleons from the target
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Stripping: The projectile loses nucleons to the target

Direct: The nucleon gained (lost) by the target enters (leaves) a shell without disturbing the target’s other
nucleons

Compound Nucleus: Target and projectile form a new nucleus in an excited state, which relaxes with
a lifetime of around 10−16 s, much longer than the 10−21 s a traversal of the target by the projectile would
take, so the subsequent transformation is independent of the formation of the compound nucleus.

Laboratory and Center-of-Mass Reference Frames

Consider this non-relativistically. If a projectile moves, in the laboratory frame, with velocity vproj , then, in
the center-of-mass (CM) frame,

v′proj = vproj − vCM (6.59)

v′targ = vCM (6.60)

In the CM frame, ptot = 0, so

mprojv
′
proj = mtargv

′
targ

mproj(vproj − vCM ) = mtargvCM

(mtarg +mproj)vCM = mprojvproj (6.61)

and (mtarg + mproj)vCM is the CM momentum in the laboratory frame. The transformation equations,
then, are

v′targ =
mproj

mtarg +mproj
vproj (6.62)

v′proj =
mtarg

mtarg +mproj
vproj (6.63)

6.4.6 Energy Relations

The energy released in a nuclear reaction

Q ≡ Kafter −Kbefore = E0 before − E0 after (6.64)

since E = E0 + K and energy is conserved. Exothermic or exoergic reactions, Q > 0, occur regardless of
the kinetic energy of the initial particles. Endothermic or endoergic reactions, Q < 0 require the projectile
kinetic energy to be above a certain threshold. If all particles are the same before and after the collision,
and Q = 0, the reaction is elastic.

Consider a projectile a interacting with a target nucleus A at rest producing particle b and a residual
nucleus B: a+A→ b+B. Relativistic energy will of course be conserved:

(Ka +ma) +mA = (Kb +mb) + (KB +mB) (6.65)

Then
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Q = Kb +KB −Ka = ma +mA −mb −mB (6.66)

which shows that measuring an interaction’s Q value offers information about the masses involved in the
interaction, and can cross-check the results of mass spectrometry.

In principle, measuring Ka, Kb, and KB would be sufficient, but it’s often hard to measure KB (being
massive, there’s little recoil and B is seldom free to investigate). But such nuclear physics interactions are
typically sub-relativistic,

K =
p2

2m
(6.67)

and momentum is conserved,

pa = pb + pB (6.68)

so

KB = Ka
ma

mB
+Kb

mb

mB
− 2

mB

√
mambKaKb cos θab (6.69)

and

Q = Kb

(
1 +

mb

mB

)
−Ka

(
1− ma

mB

)
− 2

mB

√
mambKaKb cos θab (6.70)

where θab is the angle between the directions of a and b.

6.4.7 Cross Sections

The probability that a projectile interacts with a nucleus in a given region of the target is called a cross
section,

σ =
number of reactions per second per nucleus

number of projectiles incident per second per area
(6.71)

the effective area per nucleus as “seen” by a projectile. It differs for different reactions and for different
projectile energies (below threshold for an endothermic reaction, the cross section is zero). For a target of
thickness t and n nuclei per unit volume, the number Nsc of particles scattered by N0 incident projectiles is

Nsc = N0(1− e−nσt) (6.72)

6.4.8 Fission

Bombarding uranium with neutrons produces elements in the middle of the periodic table, releasing, due to
the reduction of Coulomb potential, around 200 MeV of energy in the form of the kinetic energy of the two
fragments. Also emitted are two or three neutrons, which can induce remaining uranium nuclei to fission.
Under certain conditions, a chain reaction can occur. If such a chain reaction could split all the nuclei in
a block of uranium, the energy liberated would be ∼ 106 times that liberated burning a block of coal or
exploding a block of dynamite of the same mass, and because the time scale characterizing nuclear processes
is much shorter than that characterizing atomic processes, the energy is released much more rapidly than in
a chemical explosion.
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The 200 MeV of released energy indicates that the fission potential well is around 200 MeV deep, implying
that spontaneous splitting of uranium is unlikely. In fact, 238U has a partial lifetime for fission of around 1016

years. What was just described is an example of induced fission, which is usually induced by the capture of
a low-energy neutron. In a large-Z nucleus, the last neutron’s binding energy En ≈ 6 MeV. It may happen
that the energy released in the capture is sufficient to exceed the fission barrier, or else it excites the nucleus
into collective vibrations, similar to a compound nucleus, leading to periodic elongations, some of which may
be sufficient for fission.

Figure 6.17: Potential energy curve as a function of distance between fragments when fission occurs

Such behavior exemplifies the collective motions expected in the liquid drop model, which, in turn, is the
basis for the collective model.

A fission chain reaction can occur because each fission produces two or three neutrons. A fission rarely
splits the parent in half. Rather, while both daughters approximately retain the Z:N ratio of the parent, one
daughter normally has Z and N near the magic numbers 50 and 82, presumably to optimize energy. This,
however, leaves both nuclei with excess neutrons relative to their atomic mass numbers. Beta decay accounts
for most of the subsequent transformations toward the stability curve, despite it being a relatively slow, weak
process. In the interim, the excited, unstable nuclei can evaporate one or more of the excess neutrons. A
nucleus can still have excess neutrons after a β decay, and one of these can subsequently evaporate, a process
referred to as delayed neutron emission.

In a fission reactor, surrounding the fissile material (uranium) with a low nuclear mass material moderate
the kinetic energies of released neutrons by providing as scattering medium. This increases the likelihood
that one or another of these neutrons is captured by another uranium atom, inducing the next fission.
Smaller energies mean longer de Broglie wavelengths, and the cross section for neutron capture is directly
related to this wavelength, rather than the size of the nucleus. To sustain a chain reaction, this cross section
must be large enough to ensure that the probability is greater than or equal to 1 that one of the two or
three neutrons from each fission will be captured. At reactor startup, the probability is tuned to be slightly
bigger than 1 before gradually being reduced to 1 when equilibrium is attained. Such control is accomplished
by interleaving rods with very large neutron capture cross sections between the uranium-moderator blocks.
Control is made easier by the fact that some neutron emission is delayed.

The kinetic energies of all daughters are in part carried away by entropy absorbed in reactor parts. The
entropy-transported kinetic energy boils a liquid which drives the turbines of electric generators.
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6.4.9 Fusion

Fusion is the forming of a single nucleus from two nuclei. This will occur when the two nuclei have small A,
and the A of resulting the nucleus is no more than 60, where the binding energy per nucleon is a maximum.
In terms of the semi-empirical mass formula, fusing increases stability because it reduces the surface area
relative to volume of low-mass nuclei, increasing the binding energy per nucleon more than the decrease from
greater Coulomb energy, which isn’t all that much because Z remains small.

Despite its favorable energetics, the cross section for such a transformation is miniscule at ordinary
energies and not much bigger at significantly higher energies.

Figure 6.18: Cross section of Deuterium-Deuterium fusion as a function of Deuterium energy

Thermal fusion does occur in stars. The random kinetic energy at the sun’s interior, where temperatures
are ∼ 107 K, is only around 103 eV, so fusion proceeds there at an extremely slow rate. The large quantity
of energy produced by the sun is due to its size, not the tiny fusion reaction rate. Fusion in the stars results
not only in a broad spectrum of electromagnetic radiation, but also the primordial production of all the
elements from helium to iron.

Stars are believed to form from interstellar hydrogen (90%) and helium (10%) of extremely low density
(1 atom/cm3), both of which were created in the early universe as it began to cool, but before its rapid
expansion period.

During the universe’s initial high energy density/high temperature period, particles and radiation were
in equilibrium:

n→ p+ e+ ν̄

ν̄ + p→ n+ ē

p+ n→ p+ n+ γ

e+ ē→ γ + γ

γ → e+ ē

During cooling prior to rapid expansion (inflation), the first nuclei and atoms formed:
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p+ e→1
1 H + γ

1
1H + n→2

1 H + γ

2
1H +2

1 H →
{

3
2He+ n
3
1H +1

1 H
3
2He+ n→3

1 H +1
1 H

3
1H +2

1 H →4
2 He+ n

The standard model of star formation begins with an upward density fluctuation in the diffuse interstallar
medium. As a result, gas and dust begin to cluster, which, if sufficiently large, can, as a result of mutual
gravitational attraction, stabilize and accrete, increasing the gravitational attraction. Interior pressure and
temperature consequently increase. As the temperature approaches roughly 105 K, hydrogen atoms ionize,
creating a plasma of protons and electrons. At T ≈ 107 K, proton kinetic energy is just sufficient to penetrate
one another’s Coulomb barriers.

p+ p→ d+ ē+ ν +K(0.42 MeV)

Involving both electromagnetic penetration and weak decay, this process is very slow. The diproton state
is highly unstable due to the Pauli exclusion principle, which forces the two protons to have anti-aligned
spins, leading to large spin-spin interactions, in addition to large asymmetry and pairing contributions to
the mass, all resulting in negative binding energy. Further, the temperature is insufficient for protons to fuse
with helium and its two protons, but when, eventually, a sufficient number of deuterons are present, their
fusion with protons to form helium involves only the strong nuclear force, and so readily proceeds. All of
this comprises the so-called proton-proton cycle:

p+ p→ d+ ē+ ν +K(0.42 MeV)

p+ p→ d+ ē+ ν +K(0.42 MeV)

d+ p→ 3He+ γ +K(5.49 MeV)

d+ p→ 3He+ γ +K(5.49 MeV)
3He+ 3He→ 4He+ p+ p+K(12.86 MeV)

e+ ē→ γ + γ +K(1.02 MeV)

e+ ē→ γ + γ +K(1.02 MeV)

The proton-proton cycle liberates 26.72 MeV of energy. The two neutrinos carry away about 0.3 MeV.
The rest is goes into random kinetic energy of core constituents, along with further gravitational contraction.

Because the A = 5 nuclear state is unstable, fusing individual nucleons to helium will not proceed to
higher A nuclei. When the core density of primordial and proton-proton cycle helium is sufficiently high,
carbon can form as follows

4He+ 4He+ 4He→ 8Be+ 4He→ 12C + γ +K(7.28 MeV)

but only if the beryllium-helium fusion occurs before the 8Be splits back into two helium nuclei within about
10−15 sec. As unlikely as this seems, an excited 12C state at about 7.65 MeV, which happens to be the sum
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of the kinetic energies of the three helium nuclei and the Q value when the core temperature reaches about
108 K, allows a resonance reaction, so the cross section becomes large enough for it to take place.

With increasing carbon density at the core, the carbon cycle replaces the proton-proton cycle as the
primary energy source. Carbon, reappearing at the end of the cycle, acts as a catalyst in the fusion of four
protons into helium, releasing along the way photons, positrons, and neutrinos.

12C + p→ 13N + γ +K(1.93 MeV)
13N → 13C + ē+ ν +K(1.20 MeV)
13C + p→ 14N + γ +K(7.55 MeV)
14N + p→ 15O + γ +K(7.29 MeV)
15O → 15N + ē+ ν +K(1.73 MeV)
15N + p→ 12C + 4He+K(4.96 MeV)

e+ ē→ γ + γ +K(1.02 MeV)

e+ ē→ γ + γ +K(1.02 MeV)

The carbon cycle also liberates 26.72 MeV of energy, but these neutrinos carry away 1.4 MeV. Since no
step in the carbon cycle is as slow as the proton-proton fusion at the beginning of the proton-proton cycle,
the former process proceeds much more rapidly than the latter.

While some carbon is forming in the sun, it has not yet entered the carbon cycle. A star with twice the
mass of the sun’s would rapidly reach the higher, critical temperature.

As the density and temperature of the core increases, heavier elements are formed by successive fusing
of helium: 16

8 O, 20
10Ne,

24
12Mg. When the core temperature reaches around 109 K, these nuclei fuse to form

even A nuclei up to 56
26Fe.

Outside the core, where it’s cooler, the proton-proton cycle continues. Even-A nuclei straying into this
region can fuse with protons to produce odd-A nuclei. For example,

20
10Ne+ p→ 21

11Na+ γ
21
11Na→ 21

10Ne+ ē+ ν

Such odd-A nuclei can fuse with helium and release neutrons

21
10Ne+

4
2 He→ 24

12Mg + n

Because the maximum binding energy per nucleon is realized at A ≈ 60, and therefore Coulomb repulsion
no longer favors nucleus capture, iron is about the heaviest element to be formed by fusion. Neutron capture,
however, which proceeds by the strong nuclear force, will occur, since it releases abou 6 MeV of binding
energy. Thus, through a series of neutron captures and subsequent β decays, so as to keep the Z/A ratio
along the stability curve, nuclei can be formed, beginning with 56

26Fe, up to 209
83 Bi. Abundances of such atoms,

as discerned from spectral measurements, cosmic ray and meterorite analyses, and the composition of Earth,
are inversely related to their neutron capture cross sections, when these are averaged over the neutrons’
high thermal energy distribution. Except as filled shells affect neutron affinity and binding energies, neutron
capture cross sections tend to increase–so abundances decrease–with A.
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Because the half-life of 21083 Bi to α-decay is only 5 days, too little time for additional neutron capture, given
the relative dearth of neutrons, 209

83 Bi is the end of the neutron capture series. But when the temperature
of the core begins to fall due to lack of fusion fuel, a precipitous gravitational collapse leads to an explosion
producing an enormous neutron flux, which likely leads to such a rapid succession of neutron captures that
elements heavier than 209

83 Bi form.
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Chapter 7

Relativistic Kinematics

7.1 Covariant Notation

Consider space-time coordinates as a four-dimensional vector or four-vector (also called a Lorentz vector):

xµ =


t
x
y
z

 (7.1)

The superscript µ = 0, 1, 2, 3 designates this as a contravariant vector. The equivalent covariant vector has
a subscript.

The magnitude squared of a four-vector is an invariant

x2 ≡
∑
µ,ν

gµνx
µxν = t2 − x2 − y2 − z2 (7.2)

where gµν is the covariant metric tensor of special relativity:

gµν = diag(1,−1,−1,−1) ≡


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 (7.3)

The notation of Equation 7.2 can be simplified further by adopting the Einstein summation convention, or
contraction, which drops the summation signs in lieu of implicit summation over pairs of co- and contravariant
indices.

x2 = gµνx
µxν (7.4)

The covariant metric tensor transforms a contravariant vector into a covariant vector

xµ = gµνx
ν (7.5)

and the contravariant metric tensor transforms a covariant vector into a contravariant vector
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xµ = gµνxν (7.6)

Thus, Equation 7.4 will usually be written

x2 = xµx
µ (7.7)

7.2 Four-Momentum

In particle physics, this notation is most often used with the energy-momentum four-dimensional, or four-
momentum, vector

pµ =


E
px
py
pz

 (7.8)

The squared magnitude of this four-vector is the squared invariant mass

m2 = p2 = E2 − |p|2 (7.9)

Here, E = γm and |p| = βγm, where γ =
√

1
1−β2 and β = v

c is the speed relative to the speed of light.

7.3 Lorentz Transformations

Special relativity is based on the axiom that the squared four-vectors just presented are Lorentz scalars, that
is, they are invariant under Lorentz transformations, in which the Lorentz vectors themselves transform as

xµ → xµ
′
= Λµ

νx
ν (7.10)

in the contravariant case. In the covariant case,

xµ → x′µ = Λν
µxν (7.11)

Typically, Λ is a boost along some axis. Choosing the x-axis, for example, and boosting along it −β,
such that a particle with velocity β along x in the lab frame is at rest in the boosted frame,

Λµ
ν =


γ −βγ 0 0

−βγ γ 0 0
0 0 1 0
0 0 0 1

 (7.12)

Higher-rank tensors (a scalar is a rank-zero tensor, a vector is a rank-one tensor) are boosted along each
rank:

Aµν → Aµν′
= Λµ

ρΛ
ν
σA

ρσ (7.13)

Note that from Equations 7.10 and 7.11 that Λµ
ν ̸= Λν

µ. Rather,
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Λν
µ = gµρΛ

ρ
σg

σν (7.14)

Also note that the matric tensor is a rank one tensor, and so transforms

gµν = Λµ
ρΛ

ν
σg

ρσ (7.15)

This condition defines the Lorentz group, the possible Lorentz transformations.

7.4 Collisions

In relativistic kinematics, the total four-momentum is conserved. In the center of mass (CM) frame, the
magnitude of the total momentum is zero, but not the total energy.

Remember the difference between conserved and invariant quantities: a conserved quantity is one that
is the same value before and after an interaction; an invariant quantity has the same value in all inertial
systems. Energy is conserved in all interactions, but not invariant in different frames; mass is invariant in
different frames, but not conserved in interactions.

See Griffiths, chapter 3, for examples.
Suggestions for solving problems in relativistic kinematics:

1. Use the invariant m2 = E2 − p2 when you know a particle’s momentum and need to know its energy,
and vice versa.

2. Use p/E = β if you want to determine the velocity knowing the momentum and energy.

3. Exploit the invariance of the square of the energy-momentum 4-vector, p2 = m2.

4. Try the CM frame if you’re frustrated by the lab frame.
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Chapter 8

Symmetries, Conservation Laws, and
Group Theory

8.1 Introduction

By symmetry is meant an operation that can (at least in principle) be performed on a system which leaves
the system invariant, such that the system after the operation is indistinguishable from the system before
the operation. Symmetries are associated with conservation laws by Noether’s Theorem, and are described
mathematically by group theory.

8.2 Groups

A group, G, is a set of elements, A, B, C, . . ., and an operator, •, that satisfy the following axioms:

closure: If A and B are elements of G, then so is A •B

associativity: If A, B, and C are elements of G, then A • (B • C) = (A •B) • C

identity: There exists an element, I, of G such that for every element of G, A • I = I •A = A

inverse: For every element of G, there exists an inverse A •A−1 = A−1 •A = I
The equilateral triangle, for example, is unaffected by a (counter-)clockwise rotation (R−)R+ through

2π
3 radians, rotations about a bisector of any vertex, RA, RB , RC , or by doing nothing, I. Note that, for
example, R2

+ = R+ •R+ = R−. We can call this the equilateral triangle group.
If any two group elements A and B commute, A•B = B•A, the group is referred to as abelian, otherwise

as non-abelian.
A function f that perserves group structure, that is, f(B) • f(B) = f(A • B) is referred to as a group

homomorphism, implying that f maps G onto another group. If there exists a function g that reverses the
mapping, g(f(A)) = A, for all elements of G, then f is referred to as a group isomorphism.
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Table 8.1: Equilateral triangle group operations (group table)

I R+ R− RA RB RC

I I R+ R− RA RB RC

R+ R+ R− I RC RA RB

R− R− I R+ RB RC RA

RA RA RC RB I R+ R−
RB RB RA RC R− I R+

RC RC RB RA R+ R− I

Groups can be represented by groups of matrices. That is, matrix MA corresponds to element A for
all elements, and if A • B = C, then MAMB = MC . The representation is not necessarily faithful, in the
sense that any number of elements may be represented by the same matrix, that is, the group of matrices is
homomorphic, but not necessarily isomorphic.

If G is a group of matrices, it represents itself, and is in fact the fundamental representation. Generally,
matrices of various dimensions will also represent G. Additional representations can be constructed by
combining irreducible ones that can be decomposed into block diagonal form, but these are not counted.
Only the irreducible ones are of concern to physics.

8.3 Continuous Symmetries

The equilateral triangle group is an example of a finite group (it contains a finite number of elements), but
there are also infinite groups (consider the circle rather than the equilateral triangle).

8.3.1 SO(2)

Special orthogonal transformations in two dimensions are represented by the group SO(2). Orthogonal
means that the transformation matrices are square with determinants of 1 or −1, satisfy OTO = OOT = I
or, equivalently, OT = O−1, and whose rows and columns are orthogonal unit vectors, while sums of products
across rows or columns are zero. Orthogonality implies that the magnitude of the transformed vectors is left
invariant. Special means that the determinants of the matrices equal 1, which implies that only rotations–not
reflections–are allowed.

A fundamental representation of this group is the 2× 2 rotation matrix

Oα =

(
cosα sinα
− sinα cosα

)
(8.1)

describing clockwise rotations of angle α.
This is an abelian group, so a finite rotation can be thought of as a product of n rotations each of angle

α/n,

Oα = (Oα/n)
n (8.2)

Keeping this in mind, let n→ ∞, so that α/n is small enough to take only the first terms in the Taylor
expansions of the the trigonometric functions
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Oα = lim
n→∞

(
1 α/n

−α/n 1

)n

≡ lim
n→∞

(
I − i

α

n
J
)n

(8.3)

where, again, I is the identity matrix (here, 2× 2), and

J ≡
(

0 i
−i 0

)
(8.4)

Recalling that eA = limn→∞ (1 +A/n)n,

Oα = e−iαJ (8.5)

J is called the generator of this representation of SO(2): all rotations can be generated begining with J .
SO(2) can be conceptualized therefore as describing rotations in the complex plane, products of eiα

for real α. Such transformations leave the magnitude of complex numbers invariant. This is actually the
definition of the group of unitary transformations in one, complex dimension, U(1), signifying that U(1) and
SO(2) are isomorphic to one another.

8.3.2 SO(3)

Rotations in three dimensions are described by the group SO(3). The Cartesian axes may be taken as the
axes of rotation

Rαx =

1 0 0
0 cosαx sinαx

0 − sinαx cosαx

 Rαy
=

cosαy 0 − sinαy

0 1 0
sinαy 0 cosαy

 Rαz
=

 cosαz sinαz 0
− sinαz cosαz 0

0 0 1

 (8.6)

Using the same approach as with SO(2), an arbitrary rotation

R = e−iα·J (8.7)

where

α = (αx, αy, αz) (8.8)

are the rotation angles about the axes and

Jx =

0 0 0
0 0 i
0 −i 0

 Jy =

0 0 −i
0 0 0
i 0 0

 Jz =

 0 i 0
−i 0 0
0 0 0

 (8.9)

are the generators for the rotation matrices.
Arbitrary S0(3) rotations, unlike SO(2) rotations, are non-abelian:

[Jk, Jl] = 2i
∑
m

εklmJm (8.10)

where εklm is the completely antisymmetric, rank 3, unit tensor: εklm = −εlkm = 1, and similarly with
other permutations, while εkkl = 0, and similarly with any repeated indices. The commutation relations of
Equation 8.10 consititue the SO(3) Lie algebra, a linear algebra that underlies the group properties.
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8.3.3 SU(2)

The conjugate transpose (Hermitian conjugate) of a unitary matrix is equal to its inverse, U†U = UU† = I.
Special unitary matrices have determinant 1. They have the form

U =

(
r0 − ir3 −r2 − ir1
r2 − ir1 r0 + ir3

)
(8.11)

where ri are real.

The unitary condition is satisfied if r20 + r21 + r22 + r23 = 1, which also satisfies the unit determinant
condition. Therefore,

r0 =
√
1− (r21 + r22 + r23) (8.12)

which in the infinitessimal limit of dr = (dr1, dr2, dr3), and to first order, r0 = 1, so

U = I − idr · σ (8.13)

where σ = (σ1, σ2, σ3) are the Hermitian Pauli matrices

σ1 =

(
0 1
1 0

)
σ2 =

(
0 −i
i 0

)
σ3 =

(
1 0
0 −1

)
(8.14)

which satisfy the commutation relations

[σk, σl] = 2i
∑
m

εklmσm (8.15)

The Pauli matrices as written here are normalized such that

Tr(σkσl) = 2δkl (8.16)

Notice that σ2 is the generator of SO(2), and the commutation relations are the same as those for SO(3).
While the three differ globally, they are equivalent locally.

8.3.4 SU(3)

SU(3) is the three-dimensional equivalent of SU(2). A general n×n complex matrix has 2n2 free parameters.
A unitarity constraint reduces that to n2. The determinant-1 requirement reduces the number of free
parameters by 1. So, SU(n) matrices have n2 − 1 free parameters. While SU(2), therefore, has 3 free
parameters and, hence, 3 group generators (the Pauli matrices), SU(3) has 8 free parameters and generators,
which are usually the Gell-Mann matrices
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λ1 =

0 1 0
1 0 0
0 0 0

 λ2 =

0 −i 0
i 0 0
0 0 0

 λ3 =

1 0 0
0 −1 0
0 0 0


λ4 =

0 0 1
0 0 0
1 0 0

 λ5 =

0 0 −i
0 0 0
i 0 0

 λ6 =

0 0 0
0 0 1
0 1 0

 (8.17)

λ7 =

0 0 0
0 0 −i
0 i 0

 λ8 = 1√
3

1 0 0
0 1 0
0 0 −2


The commutation relations between these are

[
λk
2
,
λl
2
] = i

∑
m

fklm
λm
2

(8.18)

where fklm are structure constants antisymmetric under the exchange of two indices and

f123 = 1 f458 = f678 =

√
3

2
f147 = f165 = f246 = f257 = f345 = f376 =

1

2
(8.19)

The normalization of the Gell-Mann matrices as written here is, like that of the Pauli matrices

Tr(λkλl) = 2δkl (8.20)
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Chapter 9

Standard Model

9.1 Introduction

On the fundamental level, matter is made of three types of elementary particles: quarks, leptons, and
mediators.

Table 9.1: Quarks

quark mass charge D U S C B T
[MeV]

d 2 −1/3 -1 0 0 0 0 0
u 5 2/3 0 1 0 0 0 0
s 100 −1/3 0 0 -1 0 0 0
c 1200 2/3 0 0 0 1 0 0
b 4200 −1/3 0 0 0 0 -1 0
t 174000 2/3 0 0 0 0 0 1

Table 9.2: Leptons

lepton mass charge Le Lµ Lτ

[MeV]

e 0.511 -1 1 0 0
νe < 2× 10−6 0 1 0 0
µ 106 -1 0 1 0
νµ < 0.2 0 0 1 0
τ 177 -1 0 0 1
ντ < 18 0 0 0 1

Each lepton and quark pairs with an anti-lepton and anti-quark, with opposite quantum number signs.
Each quark and anti-quark has three different colors (strong charge), and there are eight sorts of gluon. And
then there’s the Higgs boson. In some counting schemes, that’s 61 different particles.
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Table 9.3: Mediators

Mediator Charge Mass Lifetime
[MeV] [s]

gluon 0 0 ∞
photon 0 0 ∞
W± ±1 80420 3.11× 10−25

Z0 0 91190 2.64× 10−25

graviton 0 0 ∞

We know of four kinds of interactions among these particles (although not every particle engages in each
kind of interaction; in fact, the kind of interactions a given particle engages in is one of the distinctions among
the particles): strong, electromagnetic, weak, and gravitational. In quantum field theory, each interaction
involves a field and a mediator.

Table 9.4: Interactions

Interaction Relative Theory Mediator
Strength

Strong 10 QCD gluon
Electromagnetic 10−2 QED photon

Weak ∼ 10−13 QFD W±, Z0

Gravitational 10−42 GR graviton

Particle physics does not take gravitation into account. On the scale of of the interactions at accessible
energies (and distances), it is much too weak to make an impact.

Here we present a qualitative overview of the remaining three interactions. Much of the presentation
depends on interpretting Feynman diagrams. Recall that, in the convention we are using, time flows from
left to right. Other than that, nothing empirical is represented.

Feynman diagrams are shorthand for a quantity calculable by following rules for interpreting them. To
analyze a process, all diagrams that can contribute to that process should be identified (drawn). This
amounts to creating every possible way that the inbound external lines can result in the outbound external
lines, regardless of the number of internal lines and vertices. Each diagram is evaluated by following Feynman
rules, which enforce momentum and energy conservation at each vertex–and therefore for the entire diagram.
The results of these evaluations are summed, and this sum represents the physical process represented by
the external lines.

It turns out that the number of such diagrams is infinite. What may, or may not save the day, depending
on the interaction, is that each vertex in a diagram contributes a multiplicative factor, related to the strength
of the interaction. If the factor is significantly less than 1, the contribution from additional vertices decreases
with number, so the number of diagrams that need to be considered to evaluate the process depends on the
precision required, and may not be very many.
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9.2 Quantum Electrodynamics (QED)

All electromagnetic phenomena are reducible to a charged particle emitting or absorbing a photon.

Figure 9.1: All QED interactions are built from this QED primitive

More complicated processes are combinations of this primitive vertex, for example Møller scattering
(Coulomb repulsion).

Figure 9.2: Møller scattering (Coulomb repulsion)

Both diagrams must be included in the analysis.

Topological reconfiguring of a Feynman diagram (usually) results in a diagram of another physical process.
Rotating or twisting the Møller scattering diagram yields Bhabha scattering (Coulomb attraction).

Figure 9.3: Bhabha scattering (Coulomb attraction)

A particle line pointing backward in time represents the corresponding antiparticle. Again, both diagrams
must be included in the analysis.

Møller and Bhabha scattering are related by crossing symmetry. The occurrence of reaction
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A+B → C +D (9.1)

implies that reactions expressed by moving one constituent of such a viable reaction to the other side of
process are dynamically possible and will occur if they are kinematically possible. That is, assuming no
conservation law is violated, the following reactions will also occur:

A→ B̄ + C +D (9.2)

A+ C̄ → B̄ +D (9.3)

C̄ + D̄ → Ā+ B̄ (9.4)

Notice that moving a constituent to the other side of the process requires transforming it into it opposite:
particle → anti-particle; anti-particle → particle. The reverse reaction C +D → A+B may be allowed due
to the detailed balance principle rather than crossing symmetry.

Calculations involving crossing symmetry-related diagrams are nearly identical. From this point of view,
they are essentially distinct physical manifestations of the same process.

Thus, Compton scattering, pair-production, and pair-annihilation are roughly indistinquishable theoret-
ically, albeit clearly different empirically.

Figure 9.4: Photon interaction processes: Top: Pair annihilation e− + e+ → γ + γ; Middle: Pair production
γ + γ → e− + e+; Bottom: Compton scattering γ + e− → γ + e−

Additional vertices require adding primitive vertices. Here are additional diagrams for Møller scattering
(Coulomb repulsion)

Internal lines do not manifest. The particles they represent are referred to as virtual particles; they
cannot be observed. External lines exhibit the physically observable process; internal lines describe the
underlying mechanism.
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Figure 9.5: Higher-order Møller scattering diagrams

Each vertex contributes the multiplicative factor α = 1/137, and so, with each additional vertex, the
contribution to the total amplitude is reduced by this factor, and the contribution to the probability is
roughly this factor squared.

It should be noted that α is not a constant at short distances (or as seen by probes of higher energy),
but increases the nearer the source charge. This occurs because the vacuum, whose lowest energy state is
not zero, behaves like a dielectric, producing virtual e+e− pairs, which shield a “bare” charge by polarizing
the region around it.

The effect is calculated with so-called loop diagrams.

Each loop is an e+e− pair, with the appropriate side of the loop drawn to the bare charge. This so-called
vacuum polarization partially screens the charge, reducing the field.

At distances less than around the electron Compton wavelength, λc = 1/m = 2.43 × 10−10 cm, the
effective charge increases. Obviously, this isn’t what we measure as the unit charge. The effect is seen with
high-energy scattering, and is only exhibited on the macroscopic scale by the Lamb shift in atomic spectra.
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Figure 9.6: Loop diagrams showing virtual pairs

Figure 9.7: Vacuum polarization

Figure 9.8: Processes forbidden under QED due to violation of one or another conservation law

Note that some diagrams are impossible under electrodynamics:
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9.3 Quantum Chromodynamics (QCD)

All strong interactions are reducible to gluon emission or absorption.

Figure 9.9: An example of a QCD primitive

The basic strong interaction binding two quarks thus is mediated by exchanging gluons.

Figure 9.10: Quark binding

While it takes only one number to describe electric charge, it takes three symbols to describe strong
charge, referred to as color. At a quark-quark-gluon vertex, the flavor won’t change, but the color may. As
color is always conserved, the gluon that mediates the change must carry color (unlike the photon, which
carries no electric charge).

Figure 9.11: Color exchange via a gluon

Gluons carry one color and one anti-color. Given three colors, one might expect 9 combinations, but
(think SU(3) and its n2 − 1 = 8 generators) there are only 8.

Since gluons carry color, they, unlike the neutral photon, can couple directly to one another, either three
or four at a time. (The symmetry group of QED, U(1), is abelian, while that of QCD, SU(3), is not.)

This obviously makes QCD more complicated than QED, but it’s not the only reason. Whereas in QED,
each vertex includes a factor of α = 1/137, limiting the number of vertices that will contribute to a QED
process, the typical QCD vertex includes a factor αs > 1. That is, each additional vertex increases the
contribution of a diagram to the sum.

This factor, though, is not a constant, for the same reason that α is not a constant: vacuum polarization.
The effect is that αs is large at the scale of the nucleus, but small at distances less than the size of a proton.
This is referred to as asymptotic freedom: at short distances, quarks behave as free particles.

It results from a competition between virtual quark loops and gluon loops (there are no photon loops,
since there are no photon-photon interactions), that is, between quark polarization, which increases αs, and
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Figure 9.12: Gluon-only vertices

gluon polarization, which decreases it. The outcome depends on the number f of quark flavors versus the
number n of colors as

a = 2f − 11n (9.5)

which equals −21 for 6 flavors and 3 colors. Since a < 0, αs decreases at short distances.
Free quarks and gluons are never seen, they are confined in colorless configurations of mesons (quark-

anti-quark pairs) and baryons (quark triplets). Quark confinement and the empirical manifestations of only
colorless combinations is more difficult to explain than asymptotic freedom. They are long-range effects,
where αs > 1, so perturbation theory and the Feynman method fail. Qualitatively, one assumes that in
separating, the quark-gluon potential increase until it exceeds the threshold for the formation of quarks and
gluons, and the state chooses the lower energy path: the potential snaps, as it were, and colorless objects
form.

9.4 Quantum Flavor Dynamics (Weak Interactions)

The weak interaction, of which there is a neutral version and a charged version, is the only fundamental
interaction (ignoring gravity) affecting all fundamental fermions. Weak interactions are reducible to W± or
Z0 vector boson emission or absorption.

Figure 9.13: Weak interaction primitive

9.4.1 Neutral Currents

Neutral weak processes leave the charges of the interacting particles unchanged. Also unchanged are flavor,
baryon number, and lepton numbers. Energy, momentum, and spin may be transferred. Here are some
examples of weak neutral processes:
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Figure 9.14: Weak neutral processes: Top: electron-neutrino scattering; Middle: proton-neutrino scattering;
Bottom: electron-electron scattering

Note that any process mediated by a photon can be mediated by a Z0 (but not vice versa). Its very
small effect on such processes can measured in e− + e+ → µ− + µ+ Bhabha scattering and parity (mirror
symmetry) violation in atomic, electromagnetic processes. Mainly, though, neutral currents are involved in
interactions involving neutrino scattering.

9.4.2 Charged Currents

Charged currents alone change flavor; only weak charged interactions produce flavor transformations.

Leptons

Figure 9.15: A(n) (anti-)lepton transformed into a(n) (anti-)neutrino via W± exchange

When a lepton is converted into a neutrino through the absorption or emission of a W , the family is not
changed: the standard model (for now) conserves lepton family.

Neutrino-muon scattering is very unlikely, and expecting to do this experimentally would be foolhardy,
but a topological twist of the diagram yields the cleanest charged weak transition, muon decay.
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Figure 9.16: Muon transformation into an electron, a muon neutrino, and an electron anti-neutrino

Quarks

Figure 9.17: Quark flavor transition via W± exchange

A common charged weak transition is the semileptonic process in which a d-quark converts to an u-quark
with the other vertex being a transition between charged and neutral leptons.

Figure 9.18: Semileptonic transition via W± exchange

The bare quark reaction in the top diagram will never occur due to quark confinement, but charged
neutrino scattering off a quarks in a proton or neutron can occur, albeit with quite small probability. On
the other hand, pion decay, as diagrammed at the bottom, is common. More common still, for reasons we
may get to discuss, is the muon current instead of the electron current. The diagram looks the same.
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Another common semileptonic transition is neutron decay. Topologically twisting the neutrino-quark
scattering diagram yields a diagram analogous to the muon decay diagram, but some additional (spectator)
quarks

Figure 9.19: Neutron decay via W± exchange

Charged weak interactions can also result in purely hadronic transitions, but the rate due toW± exchange
is overwhelmed by the strong (QCD) process (the strong coupling constant is about 1014 times larger than
the weak coupling constant [refer to Table 9.4]).

Figure 9.20: Hadronic transitions via weak and strong interactions

While weak charged transitions between quarks, as with leptons, change flavor, such change, unlike that
in the leptonic case, may be intergenerational, though they are more likely to stay within family.
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(a) Λ (sdu) → p (udu) + π− (b) Ω− (sss) → Λ(sdu) +K−

Figure 9.21: Weak charge transitions between quarks

How is it that lepton transitions conserve family number, while quark transistions do not? The Standard
Model answers this question by postulating that the charged weak interaction couples not to the quarks
which couple to the strong interaction (and have mass through the Higgs), but to linear combinations of
these, mixed by the Cabibbo-Kobayashi-Maskawa (CKM) matrix:d′s′

b′

 =

Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb

ds
b

 (9.6)

That is, as far as the weak interaction is concerned, the families are(
u
d′

) (
c
s′

) (
t
b′

)
(9.7)

rather than (
u
d

) (
c
s

) (
t
b

)
(9.8)

and ’weak’ families are conserved.
The square of the matrix element gives the relative probability of the particular transition occuring. If

the CKM matrix were a unit matrix, then d′ = d, s′ = s, and b′ = b, and there’d be no transitions between
(strong interaction) families. But, instead, nature has it that the matrix is unitary with (small) off diagonal
elements: 0.97446 0.22452 0.00365

0.22438 0.97359 0.04214
0.00896 0.04133 0.999105

 (9.9)

where uncertanties are in the last two digits.
So, for example, d′ = Vudd+ Vuss+ Vubb = 0.97446d+ 0.22452s+ 0.00365b, and, so, of all charged weak

transitions involving the up-down’ quark family, about 95% will be with the down quark, while about 5%
will be with the strange quark, and a little over 0.001% will be with the bottom quark.

9.4.3 Self- and Electromagnetic Couplings

As is the case with gluons, W± and Z0 couple to themselves and to one another, while W±, being charged,
also couple to the photon.
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Figure 9.22: Self-coupling among electro-weak mediators

The non-abelian nature of the weak interaction leads to this result, but it’s of little consequence empiri-
cally, as such contributions are surpressed by multiple orders of weak and electromagnetic coupling.

9.5 Transformations and Conservation Laws

The most universal pattern of particle behavior is that every one of them transforms into some number of
other particles unless one or more conservation laws prevents them. Preventing such transitions could be that
there are no less massive particles, leaving photons stable, or there are no less massive charged particles,
leaving electrons stable. Baryon number conservation, assuming it holds, leaves protons, as the lightest
baryon, stable, while lepton number conservation (perhaps) leaves the lightest neutrino stable. Similarly for
positrons, anti-protons, and the lightest anti-neutrino.
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Thus, aside from a handful of stable particles, everything else in this universe has a finite lifetime. Some
are characterized by mean lifetimes, because they may transform in different ways, leading to branching
fractions. Calculating lifetimes and branching fractions is one of the primary objectives of particle physics
theory.

The different interactions are more or less charactized by these lifetimes, with the strong interaction
being associated with the shortest lifetimes, around 10−23 s, and the weak interaction being associated
with the longest lifetimes, ranging from around 10−13 s to 15 min, while the lifetimes associated with
electromagnetic interactions are intermediate between these, roughly 10−16 s. In practice, particle physicists
consider everything but strongly transforming states as stable: their lifetimes can be measured by track
length or vertex displacement.

Strong interaction lifetimes are measured indirectly by reconstructing the mass of each state, measuring
the spread of the distribution, and using the energy-time uncertainty principle to estimate the lifetime:

τ = ∆t ≥ ℏ
2∆m

(9.10)

Obviously, the shorter the lifetime, the wider the mass distribution.

9.5.1 Conservation Laws

Which conservation laws are obeyed at the primitive vertices (and therefore in the reaction)?

1. Energy (all)

2. Momentum (all)

3. Angular momentum (all)

4. Charge (all)

5. Color (all: strong–zero in, zero out; others do not affect color)

6. Baryon number (all) The total number of quarks + antiquarks is the same before and after each
interaction. Baryons (three quarks) have baryon number 1, anti-baryons (three anti-quarks) have
baryon number −1, mesons (quark, anti-quark pairs) have baryon number 0, as do all leptons.

7. Lepton number (almost all) Leptons are not affected by the strong interaction, which therefore does not
affect lepton number; an electromagnetic interaction changes no flavors; a weak interaction involving
leptons has lepton in, lepton out, essentially always (except in the case of neutrinos) in the same
family–lepton.

8. Flavor (strong, electromagnetic, and neutral weak only; charged weak changes)

9. OZI [Okubo, Zweig, Iizuka] (relevant only to strong interactions) If initial state particles connect to
final-state particles only by gluon lines in a Feynman diagram, the process is suppressed
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Figure 9.23: An example of OZI suppression: the three-pion modes, though kinematically favorable, are
suppressed relative to the two-kaon mode
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Chapter 10

Gauge Theories

A gauge theory is a field theory, such as quantum electrodynamics or general relativity, whose Lagrangian is
invariant under certain local transformations described by a Lie group, a continuous group whose elements
are described by real parameters. The term gauge means a measurement. A general feature of these field
theories is that the fundamental fields cannot be measured directly, however, an associated quantity, such
as charge, energy, or velocity, can be. In these field theories, different configurations of the unobservable
fields may yield identical observable quantities. Transformations between such field configurations are called
gauge transformations, and the invariance of the measurable quantities under these transformations is called
gauge invariance, sometimes called gauge symmetry, since invariance under transformation is considered a
symmetry. Symmetries are described by groups, and the symmetry or gauge group of these symmetries is
of the form of a Lie group, associated with which is a Lie algebra of group generators, from which arises
a (typically vector) field, called a gauge field. Such fields are included in the Lagrangian to ensure gauge
invariance. When quantized, the quantum (quanta) of the field(s) is (are) referred to as a gauge boson.

All the fundamental interactions in nature are described by gauge theories. Consider, first, classical
electromagnetism. The indefiniteness of the scalar potential V is what is known as a global gauge symmetry,
since no physical effect can be measured by changing the value of V everywhere by the same amount. This
global symmetry assures global charge conservation: the total charge in the universe is a constant.

Maxwell noticed that Ampere’s Law in differential form,

∇×B = j (10.1)

where B is the magnetic field, and j is current per unit area, is not consistent with the continuity equation

∇ · j = −∂ρ
∂t

(10.2)

when ρ, the charge density, varies in time, since the divergence of a curl vanishes:

∇ · (∇×B) = 0 = ∇ · j (10.3)

Maxwell’s modification of Ampere’s Law

∇×B = j+
∂E

∂t
(10.4)
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satisfies the continuity equation due to Gaus’s Law.

∇ ·E = ρ (10.5)

It further insures local charge conservation since the continuity equation states that net charge can be
neither created nor destroyed in an arbitrarily small volume. Converting global charge conservation to local
charge conservation required coupling electric and magnetic fields.

Maxwell’s introduction of another field into Ampere’s Law is equivalent to introducing a vector potential
A to accompany the scalar potential V , whose indefiniteness leads to global charge conservation, in which
the electric field is the negative gradient of V . To get local charge conservation, the vector potential A is
related to B,

B = ∇×A (10.6)

which leads, from Faraday’s equation,

∇×E = −∂B
∂t

(10.7)

to

E = −∇V − ∂A

∂t
(10.8)

This is now a local gauge symmetry, because A and V do not uniquely determine E and B. For example,
if, for some arbitrary twice-differentiable function f that depends only on position and time, V → V − ∂f

∂t ,
then, ifA → A+∇f , the electric and magnetic fields remain unchanged. Local gauge invariance results in the
equations determining the electric and magnetic fields, the only physical observables, remaining unchanged
despite arbitrary, but correlated, changes in A and V . This correlation is important: V can be locally, not
just globally, varied, because a compensating change can be made in A.

Conversely, local invariance forces a relationship between potentials and therefore fields. The field equa-
tions can then be derived from Lorentz invariance. This is more or less the approach to developing gauge
theories, like those comprising the standard model: A global symmetry is turned into a local symmetry by
the addition of one or more new fields, and from the resulting relations the field equations are obtained.

As an aside, this is the origin of general relativity. The addition of the gravitational field turns special
relativity’s global space-time transformations into local ones.

Quantum mechanically, it is not the indeterminancy of the absolute magnitude of V , but the impossibility
of measuring the absolute phase of the wave function that is the global symmetry.

The expectation value < u > of an operator Û , the physical observable, is given by

< u >=

∫ +∞

−∞
Ψ†(x, t)ÛΨ(x, t)dx (10.9)

This is invariant under the global transformation Ψ(x, t) → eiθΨ(x, t), when θ is a scalar. Local phase
invariance requires a phase with space and time dependence, θ(x, t). The derivatives in Schrödinger’s free-
particle equation are not invariant under such a local transformation.

For electromagnetism, the charge would be involved, so to go from global to local invariance means
Qθ → Qθ(x, t). Again, to preserve electromagnetic fields, introducing A along with V and making correlated
gauge transformations on them, will satisfy the Schrödinger equation, which will thus be gauge invariant,
but it will no longer be the free-particle equation. Electromagnetic fields will be included.
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The Hamiltonian, in terms of A and V , which leads to the Lorentz force equation of motion

F = QE+Qv ×B (10.10)

is

H =
1

2m
(p−QA)2 +QV (10.11)

With the usual prescription for quantum mechanics, the Hamiltonian becomes the Schrödinger equation:[
1

2m
(−iℏ∇−QA)2 +QV

]
Ψ(x.t) = iℏ

∂Ψ(x, t)

∂t
(10.12)

Thus, gauge invariance results from substituting ∇− iQA for ∇ and ∂
∂t +

iQV
ℏ for ∂

∂t of the free-particle
Schrödinger equation. That is, turning the free-particle Schrödinger equation into a local gauge invariant
equation containing the electromagnetic field requires inserting QA in the spatial derivatives and QV in the
time derivative. Very similar derivative substitutions result in the compensating fields of the other gauge
theories.

In summary, to set up a gauge theory, identify a global gauge symmetry which can be expressed by a
transformation, convert it to a local symmetry by insisting the transformation depend on space and time
coordinates and contain something equivalent to a charge, and compensate for the local transformation
by adding new fields which can be inserted into the field-free wave equation by a suitable substitution of
derivatives.

This works when relativity is incorporated. In quantum electrodynamics, the vector potential A becomes
the wave function of the photon. When, for example, an electron, emits a photon, the phase of its wave
function changes. However, when the photon is reabsorbed by the same or a different electron, there is a
compensating phase change. The photon emission and absorption correlates the phase changes, maintaining
the overall symmetry because the electrons are indistinguishable. This process is directly equivalent in the
non-relativistic case to the simultaneous phase and gauge transformations.
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Chapter 11

Quantum Electrodynamics

11.1 Non-Relativistic Quantum Mechanics

The position representation of the Schrödinger equation acting on the wave function ψ(x) arises from the
subsitutions (with ℏ = 1) E → i ∂

∂t and p → −i∇ into the classical Hamiltonian.

H =
|p|2

2m
+ V (x) → i

∂

∂t
ψ(x) =

(
−|∇|2

2m
+ V (x)

)
ψ(x) (11.1)

Assuming ψ(x) satisfies this equation, the complex conjugate of the entire expression may be multiplied
by ψ(x) and subtracted from the original expression multiplied by ψ∗(x):

i

(
ψ∗(x)

∂

∂t
ψ(x) + ψ(x)

∂

∂t
ψ∗(x)

)
= − 1

2m

(
ψ∗(x)|∇|2ψ(x)− ψ(x)|∇|2ψ∗(x)

)
(11.2)

which is equivalent to

i
∂

∂t
|ψ(x)|2 = − 1

2m
∇ · (ψ∗(x)∇ψ(x)− ψ(x)∇ψ∗(x)) (11.3)

Comparing this to the continuity equation

∂

∂t
ρ(x) +∇ · j(x) = 0 (11.4)

we can associate

|ψ(x)|2 = ρ(x) (11.5)

and

− i

2m
(ψ∗(x)∇ψ(x)− ψ(x)∇ψ∗(x)) = j(x) (11.6)

Seeing that the density is positive definite justifies Max Born’s statistical interpretation of the wave
function, for which he was awarded the Nobel Prize in 1954, to wit, ψ∗ψ is a probability density.
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11.2 Relativistic Quantum Mechanics

Following the same procedure, but starting with the relativistic energy-momentum relation

pµp
µ = m2 = E2 − |p|2 (11.7)

instead of the classical Hamiltonian, leads to the Klein-Gordon equation, a quantized version of the relativistic
energy-momentum relation:(

∂2

∂t2
− |∇|2 +m2

)
ϕ(x) = (∂µ∂

µ +m2)ϕ(x) ≡ (□+m2)ϕ(x) = 0 (11.8)

where x is the space-time 4-vector, ϕ a wave function, and □ ≡ ∂µ∂
µ.

A plane wave solution works for free particles, just as in the non-relativistic case

ϕ(x) = Ne−ipµx
µ

= Ne−i(Et−p·x) (11.9)

where N is a normalization constant and E and p satisfy the relativistic energy-momentum relation. But
interpretting this in terms of this relation is problematic, for E = ±

√
|p|2 +m2, and the negative solution

can’t be ignored, because a quantum system requires a complete set of states, but the positive energy states
alone are not complete. The consequence is that energy levels are unbounded from below–there is no ground
state–so it seems impossible to offer a sensible physical interpretation.

Moreover, let’s, as in the non-relativistic case, take the complex conjugate of Equation 11.8 and multiply
it by ϕ(x) while multiplying Equation 11.8 by ϕ∗(x). But now we have to subtract the two expressions,
because the Klein-Gordon equation is second-order in space and time:

∂

∂t

[
i

(
ϕ∗x

∂ϕ(x)

∂t
− ϕ(x)

∂ϕ∗(x)

∂t

)]
+∇ · [−i(ϕ∗(x)∇ϕ(x)− ϕ(x)∇ϕ∗(x))] = 0 (11.10)

Comparing with the continuity equation

i

(
ϕ∗(x)

∂ϕ(x)

∂t
− ϕ(x)

∂ϕ∗(x)

∂t

)
= ρ(x) (11.11)

and
−i(ϕ∗(x)∇ϕ(x)− ϕ(x)∇ϕ∗(x)) = j(x) (11.12)

or, in Lorentz-covariant form
∂µj

µ(x) = 0 (11.13)

where
jµ = i(ϕ∗(x)∂µϕ(x)− ϕ(x)∂µϕ∗(x) (11.14)

Substituting the plane-wave, free-particle solution, Equation 11.9, into Equation 11.14,

jµ(x) = 2pµ|N |2 (11.15)

and, in particular

j0 = ρ(x) = 2E|N |2 (11.16)

which implies that the interpretation of ρ(x) as a probability density fails for negative energy solutions.
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11.3 Feynman-Stückelberg Interpretation

Ernst Stückelberg proposed that negative energy modes be considered fields propagating backward in time.
This led to a picture of associated particles and antiparticles having equal mass and spin but opposite charge,
an ansatz that permitted a perturbation theory of processes involving these fields in the form of diagrams.
Richard Feynman independently derived such diagrams in a particle formalism. They are now referred to as
Feynman diagrams, in which external lines represent a particle propagating either backward or forward in
time.

Rewriting the exponential of Equation 11.9

e−ipµx
µ

= e−i(−pµ)(−xµ) (11.17)

suggests that a negative-energy state can be considered a positive-energy state propagating backward in time
or a positive anti-state propagating forward in time.

Further, multiplying the current 4-vector, Equation 11.15, by the electron charge, −e, allows it to be
reinterpretted as an electric current

jµ(x) = −2epµ|N |2 = +2e(−pµ)|N |2 (11.18)

suggesting that the electric current is conserved in the free-particle plane wave solution for both positive-
and negative- energy solutions.

The conserved probability interpretation of the continuity equation doesn’t apply in relativistic quantum
mechanics, in which particles and anti-particles can be created and annihilated.

11.4 Principle of Least Action

Because known spinless particles, for example, the pi mesons, are both unstable and interact strongly, the
practical utility of the Klein-Gordon equation is limited. The principle of least action offers a more rigorous
treatment in the context of quantum field theory, in which solutions for ϕ(x) include a quantum scalar or
pseudoscalar field whose quanta are spinless particles.

Consider the action S =
∫ t1
t0
dtL(q, q̇), where L is the Lagrangian, to be stationary under small, arbitrary

changes of the generalized coordinate q(t) at any time t:

δS =

∫ t1

t0

dt

(
∂L

∂q
δq +

∂L

∂q̇
δq̇

)
= 0 (11.19)

Integrating by parts after reordering derivatives∫ t1

t0

dt

[
∂L

∂q
− d

dt

(
∂L

∂q̇

)]
δq = 0 (11.20)

Since the variations in q are arbitrary, the result is the Euler-Lagrange equation

∂L

∂q
− d

dt

(
∂L

∂q̇

)
= 0 (11.21)

In field theory, L is obtained by integrating the Lagrangian density, or simply the Lagrangian, L(ϕ(x), ∂µϕ(x)),
where ∂µϕ ≡ ∂ϕ

∂xµ , over four-dimensional space-time, so that the action is a four-dimensional integral, ex-
pressible in covariant form
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δS =

∫
d4x

(
∂L
∂ϕ

δϕ(x) +
∂L

∂(∂µϕ)
δ∂µϕ(x)

)
= 0 (11.22)

which yields the Euler-Lagrange equation for the field

∂L
∂ϕ

− ∂µ

(
∂L
∂µϕ

)
= 0 (11.23)

Choosing the Langrangian

L =
1

2
∂µϕ∂

µϕ− 1

2
m2ϕ2 (11.24)

yields the Klein-Gordon equation.
In non-relativistic quantum mechanics, the physics cannot depend on a complex phase of ϕ. In relativistic

quantum mechanics, or field theory, the field can be a real or complex scalar field.
Under an infinitesimal transformation

ϕ→ ϕ+ iαTϕ (11.25)

where α is the parameter of the change and T is the generator of the group transformation. In the case of
an infinitesimal phase change of magnitude α

ϕ→ eiαϕ = iαϕ (11.26)

so T = 1.
The invariance of the action gives

δS = i

∫
d4x

(
∂L
∂ϕ

αϕ+
∂L

∂(∂µϕ)
∂µ(αϕ)

)
= i

∫
d4x∂µ

(
∂L

∂(∂µϕ)
αϕ

)
= 0 (11.27)

from which, given that the equality holds for all α,

jµ = i

(
∂L

∂(∂µϕ)
ϕ

)
(11.28)

is the conserved quantity Noether’s theorem says must be associated with the symmetry of, in this case,
phase invariance.

11.5 Perturbation Theory

Let’s allow a small interaction affect the free particle

H = H0 + V (x, t) (11.29)

where the unperturbed Hamiltonian, H0, can be solved exactly
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H0ϕn = Enϕn (11.30)

where ∫
d3xϕ∗n(x)ϕm(x) = δnm (11.31)

The time evolution of the system is

ψ(x, t) =
∑
n

an(t)ϕn(x)e
−iEnt (11.32)

From here, one goes through the procedure of applying Schrödinger’s equation and turning off the per-
turbation at large negative and positive times, so that the interaction occurs at a time t, to get the transition
amplitude

Tfi = −i
∫
d4xϕ∗f (x)V (x)ϕi(x) (11.33)

where ϕn(x) ≡ ϕn(x)e
−iEnt is the covariant form of the wave function.

11.6 Classical Electrodynamics in Covariant Form

Maxwell’s equations

∇ ·E = ρ (11.34)

∇×B− ∂E

∂t
= j (11.35)

∇ ·B = 0 (11.36)

∇×E+
∂B

∂t
= 0 (11.37)

Equation 11.36 implies that B can be written

B = ∇×A (11.38)

where A is a vector potential, from which and Equation 11.37

E = −∇V − ∂A

∂t
(11.39)

where V is a scalar potential. Then Equation 11.35 can be written

∇×B− ∂E

∂t
= [−|∇|2A+∇(∇ ·A)] +∇∂V

∂t
+
∂2A

∂t2
(11.40)

from which

□A+∇
[
∇ ·A+

∂V

∂t

]
= j (11.41)
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And Equation 11.34 becomes

∇ ·E = −|∇|2V − ∂

∂t
(∇ ·A) (11.42)

from which, after adding and subtraction ∂2V
∂t2 ,

□V − ∂

∂t

(
∇ ·A+

∂V

∂t

)
= ρ (11.43)

Defining

Aµ = (V,A) (11.44)

jµ = (ρ, j) (11.45)

the two inhomogeneous differential equation, Equations 11.41 and 11.43, can be written in covariant form

□Aµ − ∂µ(∂νA
ν) = jµ (11.46)

or, defining the electromagnetic field tensor

Fµν ≡ ∂µAν − ∂νAµ (11.47)

Equation 11.46 can be compactly written

∂µF
µν = jν (11.48)

The elements of Fµν are E and B, and so it contains all the physical information. Changes in A or V of the
sort

Aµ → Aµ + ∂µf(x, t) (11.49)

where f is an arbitrary function of space and time, do not change the physics. Several choices for such a
change to Aµ are standard.

The Lorentz condition, ∂νA
ν = 0, for example, gives, for Equation 11.48

□Aµ = jµ (11.50)

This freedom to vary the four-potential Aµ is known as gauge freedom, and the Lorentz condition is also
known as the Lorentz gauge. Another gauge is the Coulomb gauge,

∇ ·A = 0 (11.51)
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11.6.1 Covariant Derivative

For our purposes, a particle interaction with the electromagnetic field can be described as a transformation
(known as minimal substitution)

pµ → pµ +QAµ (11.52)

Using the standard prescription, the Schrödinger equation becomes(
1

2m
(−i∇+QA)2 +QV

)
ψ(x, t) = i

∂ψ(x, t)

∂t
(11.53)

A gauge transformation, Equation 11.49, should leave the form of Equation 11.53 invariant, which will
be the case if the wave function simultaneously transforms

ψ(x, t) → e−iQf(x,t)ψ(x, t) (11.54)

a space- and time-dependent, that is, local, phase transformation. Now, the U(1) symmetry group corre-
sponds to the circle group and can be represented by all possible phase transformation. Thus, QED is an
(abelian) gauge theory with U(1) group symmetry. As we’ll see, the electromagnetic field is the gauge field
mediating interactions between charged fermions.

Turning the argument around, requiring that Equation 11.54 leave the Schrödinger equation invariant
leads to the minimal substitution, Equation 11.52, which, quantum mechanically, becomes

i∂µ → i∂µ +QAµ ≡ iDµ (11.55)

the covariant derivative.

11.7 Transition Amplitudes

Let’s let Q be e, the charge of a proton, and define a potential V

V = −ie(∂µAµ +Aµ∂µ)− e2A2 (11.56)

This is an operator, so the derivative acts on a wave function, not just on Aµ

V ψ = −ie(∂µAµ +Aµ∂µ)ψ − e2A2ψ

Since the charge e is small, we neglect the last term and consider the transition amplitude, Equation 11.33,

Tfi = −i
∫
d4xϕ∗f (x)V (x)ϕi(x) = i

∫
d4xϕ∗f (x)(ie)(A

µ∂µ + ∂µA
µ)ϕi(x) (11.57)

Integrating the second term by parts, allowing the surface integral to vanish, leads to

Tfi = −i
∫
d4xjµfi(x)Aµ(x) (11.58)

where

jµfi(x) = −ie[ϕ∗f (x)∂µϕi(x)− (∂µϕ∗f (x))ϕi(x)] (11.59)
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which appears similar to the Lorentz covariant form of the density-current four-vector, Equation 11.14, except
that the wave function and its conjugate are different, the former is the initial state, the latter the final state,
so rather than being the density-current four-vector of a system, this is the density-current four-vector of an
interaction, in which, for example, the emission or absorption of a photon can affect a particle.

If we want to describe the interaction as between particles, rather than as an interaction between a
particle and a general electromagnetic field, we need to identify the field source:

□Aµ = j
µ(2)
fi (11.60)

now the current of the second particle, say, in the Lorentz gauge.
Consistent, then, with a scattering experiment, we consider only plane waves for the initial and final

states, in which the incoming and outgoing particles are taken to be free.

j
µ(2)
fi (x) = −e|N |2(p(2)i + p

(2)
f )µe−i(p

(2)
i −p

(2)
f )·x (11.61)

so that

Aµ(x) = −
j
µ(2)
fi (x)

q2
(11.62)

where

qµ = (p
(2)
i − p

(2)
f )µ (11.63)

is the momentum transfer.
Thus,

Tfi = −i
∫
d4xj

µ(1)
fi (x)

−gµν
q2

j
µ(2)
fi (x)

= |N |4
∫
d4xe−i(p

(1)
i −p

(1)
f +p

(2)
i −p

(2)
f ·x×

[ie(p
(1)
i + p

(1)
f )µ]

−gµν
q2

[ie(p
(2)
i + p

(2)
f )ν ]

= |N |4(2π)4δ4(p(1)i + p
(2)
i − p

(1)
f − p

(2)
f )[ie(p

(1)
i + p

(1)
f )µ]

−gµν
q2

[ie(p
(2)
i + p

(2)
f )ν ] (11.64)

Note that the (2π)4δ4() term, which effectively imposes four-momentum conservation, arises from integrating
over the plane wave exponents. Note, too, that the result is completely symmetric with respect to the
particles, as should be expected, so the tags are in some sense superfluous.

Define the so-called matrix element

−iM = [ie(p
(1)
i + p

(1)
f )µ]

−gµν
q2

[ie(p
(2)
i + p

(2)
f )ν ] (11.65)

so that, in general, the transition amplitude can be written

Tfi = −i((2π)4δ4(p(1)i + p
(2)
i −

∑
j

pj)|N |4M (11.66)
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11.8 The Feynman Calculus

Other than four-momentum conservation, guaranteed by the delta function, and the normalization, to ensure
causality, all of the physics is in the matrix element, which contains the currents of the two particles (known
as the couplings) and a term representing the magnetic field (which includes a momentum transfer: the
difference between initial- and final-state four-momenta of each particle). This suggests the picture of an
uncharged object, call it a photon, being emitted by one of the charged particles and absorbed by the other,
in the process of which four-momentum is transferred. The term

−gµν

q2 is called the photon propagator. This
picture is realized as a Feynman diagram.

Figure 11.1: Feynman diagram of electrodynamics matrix element

Related to such diagrams is a set of rules (Feynman rules) for translating them into matrix elements.

1. A diagram consists of lines (external and internal) and vertices. The direction (in time) of a line
indicates whether it represents a particle (forward, basically left-to-right), anti-particle (backward,
basically right-to-left), or propagator (perpendicular, vertical).

2. Each vertex contributes a factor

(2π)4δ4(
∑
j

pj)[ie(pi + pf )
µ] (11.67)

where the delta function ensures four-momentum conservation at each vertex, pj are incoming four-
momenta, the arrows give the directions with respect to time of the four-momentum relative to the
vertex in the coupling e(pi + pf )

µ. Note that arrow direction is always continuous (in time) along a
line.

3. Each internal line is a propagator, whose internal four-momentum transfer qµ is integrated over. For
a photon: ∫

d4q

(2π)4
−igµν
q2

(11.68)

Internal lines indicate virtual or off-shell particles.

4. Each diagram automatically includes (2π)4 times a delta function that guarantees four-momentum
conservation at each vertex. Integrating over this eliminates one degree of freedom.

5. The matrix element for a given process (for given initial and final states) generally corresponds to
multiple diagrams, each contributing a term that needs to be summed.
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11.9 Dirac Equation

Recall that the Klein-Gordon equation, (□+m2)ψ(x) = 0, is for spin-0 particles. Free spin-1/2 particles are
described by the Dirac equation:

(i∂µγ
µ −m)ψ(x) = 0 (11.69)

where γµ satisfy the anticommutation relation

{γµ, γν} = γµγν + γνγµ = 2Igµν (11.70)

ψ(x) must have four dimensions, represented by a column vector called a bi-spinor,

ψ ≡
(
ψA

ψB

)
(11.71)

The simplest mathematical entity satisfying Equation 11.70 is a 4×4 matrix. Particle physicists typically
choose the Björken-Drell convention, which has a 2× 2 block formalism

γ0 =

(
1 0
0 −1

)
, γj =

(
0 σj

−σj 0

)
(11.72)

where 1 is the 2× 2 identity matrix and σj are the Pauli matrices.
Considering a free-particle-at-rest plane wave solution, the Dirac equation can then be rewritten in two

forms, one for each bi-spinor:

(i
∂

∂t
−m)ψA = 0 (11.73)

(−i ∂
∂t

−m)ψB = 0 (11.74)

with a positive energy (particle) solution for ψA ∝ e−imt and a negative energy (anti-particle) solution for
ψB ∝ e+imt.

The Pauli matrices are Hermitian: σj† = σj . This implies that γ0† = γ0 and γj† = −γj . Using this and
the anti-commutation relation,

γµ† = γ0γµγ0 (11.75)

Taking the Hermitian conjugate of the Dirac equation

−i∂µψ†(x)γµ† −mψ†(x) = −i∂µψ†(x)γ0γµγ0 −mψ†(x) = 0 (11.76)

We then define ψ(x) ≡ ψ†(x)γ0 so that multiplying the conjugate Dirac equation from the right by −γ0

i∂µψ(x)γ
µ +mψ(x) = 0 (11.77)

Now, multiplying the Dirac equation on the left by ψ(x) and the conjugate equation on the right by ψ(x),
yields a continuity equation

i∂µ(ψ(x)γ
µψ(x)) = 0 (11.78)
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It’s interesting to note that the time component

ψ(x)γ0ψ(x) = ψ†(x)ψ(x) (11.79)

looks like a solution that satisfies a probability interpretation, which couldn’t be found with the Klein-Gordon
equation. On the other hand, the antiparticle interpretation remains. Anyway, the continuity equation leads
to a definition of a conserved (electric) current:

jµ = −eψ(x)γµψ(x) (11.80)

11.10 Spin-1/2 Particles

Consider a free-particle plane wave solution to the Dirac equation for non-zero momenta. ψ has four inde-
pendent degrees of freedom, two for E > 0 and two for E < 0, where each pair corresponds to different spin
states, so the bi-spinor can be separated into two spinors, ψA and ψB . Then, the plane-wave term is pulled
out from two spinors uA and uB :

ψ(x) =

(
uA
uB

)
e−ip·x (11.81)

which leads to coupled equations

(σ · p)uB = (E −m)uA (11.82)

(σ · p)uA = (E +m)uB (11.83)

Looking just at the positive-energy E > 0 solutions, identify two independent spinors

u
(1)
A ≡ χ(1) =

(
1
0

)
u
(2)
A ≡ χ(2) =

(
0
1

)
(11.84)

Plugging this into Equation 11.83

u
(1,2)
B =

(σ · p)
E +m

u
(1,2)
A (11.85)

And similarly for the negative energy E < 0 solutions, for which u
(1,2)
B = χ(1,2), and Equation 11.82

u
(1,2)
A =

−(σ · p)
−E +m

u
(1,2)
B (11.86)

The negative signs are there to indicate the physical four-momentum.

When performing calculations, the four solutions tend to be expressed
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u(1)(p) = N


1
0
pz

E+m
px+ipy

E+m

 (11.87)

u(2)(p) = N


0
1

px−ipy
E+m
−pz

E+m

 (11.88)

v(1)(p) = u(4)(−p) = N


px−ipy

E+m
−pz

E+m

0
1

 (11.89)

v(2)(p) = −u(3)(−p) = N


pz

E+m
px+ipy

E+m

1
0

 (11.90)

so that for particles

ψ(x) = ae−ip·xu (11.91)

and for antiparticles

ψ(x) = aeip·xv (11.92)

11.10.1 Interacting Spin-1/2 Particles

Again employing the minimal substitution, pµ → pµ + eAµ,

(i∂µγ
µ −m)ψ(x) = (i

∂

∂t
γ0 + i∇ · γ −m)ψ(x) = −eAµγ

µψ(x) (11.93)

and left-multiplying by γ0 leads to

i
∂

∂t
ψ(x) = (−i∇ · γ0γ + γ0m)ψ(x)− eAµγ

0γµψ(x) (11.94)

Since the right-hand side of this equation has the form H = H0 + V , the term −eAµγ
0γµ can be identified

as the perturbing potential V , so, the transition amplitude is

Tfi = −i
∫
d4xψ†x(−eAµγ

0γµ)ψi(x) = −i
∫
d4xjµfi(x)Aµ(x) (11.95)

where

jµfi(x) = −eψf (x)γ
µψi(x) (11.96)
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11.10.2 Feynman Rules for Spin-1/2 Particles

1. Each photon propagator introduces the factor∫
d4q

(2π)4
−igµν
q2

(11.97)

while each fermion propagator introduces the factor∫
d4q

(2π)4
i(/q +m)

q2 −m2
(11.98)

where, in general, /a ≡ aµγ
µ for any aµ

2. Each vertex introduces a factor
(2π)4δ4(

∑
j

pj)× ieγµ (11.99)

where all four-momenta are assumed to point toward the vertex

3. Noting that both fermions and real photons can have external lines (recall that all four-momenta are
assumed to point toward the vertex),

incoming outgoing

fermions u ū
antifermions v̄ v

photons εµ εµ
∗

4. All contributing diagrams must be summed, but diagrams that differ only by exchanging identical
fermions must have opposite signs, to satisfy the Pauli principle that wave function must be fully
antisymmetric under the exchange of identical fermions

5. Integration over the delta functions reduce the number of momentum degrees of freedom; the final
delta function is disgarding, leaving −iM

11.11 Magnetic Moment of the Electron

Consider the interaction of an electron with an external magnetic field. Non-relativistic quantum mechanics
posits an interaction term µ ·B, where µ is the magnetic moment of the electron, in the total Hamiltonian:

µ = gµBS (11.100)

where µB = e/2m is the Bohr magneton, S is the spin vector of the electron

S =
1

2
σ (11.101)

where σ are the Pauli matrices, and g is the Landé factor.
The term in the non-relativistic Hamiltonian can then be written
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1

2
gµBσ ·B (11.102)

which results, when B is static and weak, in Zeeman splitting.
Measurements show that g ≈ 2. In fact, QED predicts the value in agreement with measurement to 9

decimal places.
By adding an electromagnetic field to the Dirac equation through minimal substitution,

σ · (p+ eA)uB = (E + eA0 −m)uA (11.103)

σ · (p+ eA)uA = (E + eA0 +m)uB (11.104)

And substituting uB in the second equation for uB in the first gives:

[σ · (p+ eA)]2uA = [(E + eA0)2 −m2]uA (11.105)

Noting that σkσl = δkl+iεklmσm, and treating p as an operator (as it should be), leads to a simplification
of the left-hand side of Equation 11.105:

[σ · (p+ eA)]2 = σkσl[pkpl + e2AkAl + e(pkAl +Akpl)]

= (δkl + iεklmσm)[pkpl + e2AkAl + e(pkAl +Akpl)]

= pkpk + e2AkAk + e(pkAk +Akpk) + i(pkAl +Akpl)εklmσm

= (p+ eA)2 + e(∇×A) · σ
= (p+ eA)2 + eσ ·B (11.106)

Taking the right-hand side only to first order (the non-relativistic limit, where E−m≪ m and A0 ≪ m),

[(p+ eA)2 + eσ ·B]uA ≈ 2m(E + eA0 −m)uA (11.107)

Rearranging into the form of the Schrödinger equation

(E −m)uA =

[
(p+ eA)2

2m
− eA0 +

e

2m
σ ·B

]
uA (11.108)

Notice that the last term represents the magnetic moment interaction with an external field, but explicitly
demonstrating g = 2, because of our fudge. In fact, g ̸= 2. The quantity computed and measured is the
so-called anomolous magnetic moment:

ae ≡
ge − 2

2
(11.109)

A 1948 calculation due to Schwinger gives the result to first order:

ae =
α

2π
≈ 0.0011614 (11.110)

Higher order, perturbative corrections (that is, diagrams with more photon vertices), give
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ae = 0.001159652181643(764) (11.111)

It is measured at present to be

ae = 0.00115965218073(28) (11.112)

QED theory and experiment thus agree to more than 9 significant figures. The magnetic moment of the
electron is the most accurately verified prediction in physics.


