
Week 12: Four-Momentum (Graduate)

Four-Momentum

Notation: four-vectors are indicated with a bold capital letter; three-vectors
are indicated with a lowercase letter under an arrow; vector components are
indicated by italicized letters.

In special relativity, a four-vector (or 4-vector) is a four-component object
that transforms via the Lorentz transformation. Space-time is one such four-
vector. Four-momentum, P is the most important relativistic four-vector for
particle and nuclear physics.

P ≡ (E, p⃗) = (E, px, py, pz)

where E is the relativistic energy, E = γmc2 = γm in natural dimensions, and
p⃗ = (px, py, pz) is the relativistic three-momentum, px = βxγmc = γmvx, etc.

for py and pz, where βx = vx/c = vx, γ = 1/
√

1− β2 = 1/
√
1− |v⃗|2, where,

|v⃗| =
√
v2x + v2y + v2y. From this, |p⃗| = βγmc = γm|v⃗|. Note that in this

context, β and γ refer to the motion of an object in the (inertial)
frame in which the observer is at rest.

The relativistic kinetic energy is

K = E −mc2 = E −m,

where m is the mass of the object whose four-momentum is being referred to.
Furthermore,

|p⃗|c
E

= β ⇒ |p⃗|
E

= |v⃗|.

Finally, the most useful relation for nuclear and particle physics, the magnitude
of the four-vector, which yields the (invariant) mass of the object:

m2c4 = E2 − |p⃗|2c2 ⇒ m2 = E2 − |p⃗|2.

Notice, in particular, the minus sign in the calculation of this magnitude. The
gauge [the (non-Euclidian) geometry] of special relativity dictates that the mag-
nitude of a four-vector is the “time” component squared minus the square of
the “space” vector components.

Objects of mass m = 0 move at |v⃗| = c = 1, and conversely, any object
moving at |v⃗| = 1 has zero mass.1 This implies that E = |p⃗| for massless
particles, like photons. With such a particle, all of its energy is kinetic.

The Lorentz tranformations transforms the four-momentum between inertial
frames:

1E = γm is always finite. γ → ∞ as |v⃗| → 0, so m must be zero for E to be finite.
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E′

p′x
p′y
p′z

 =


γ(E − βpx)
γ(px − βE)

py
pz


Note that here β and γ refer to the motion of the prime frame relative
to the unprimed frame, oriented such that the x-axes of the two
frames are parallel.

1. What is the magnitude of the velocity of a particle whose total
energy is 10% larger than its mass (rest energy)?

2. A particle of mass m moves in the −y direction with a kinetic
energy K = 2

3
m. In terms of m, what are the components of the

particle’s four-momentum?

3. In Newtonian physics, the kinetic energy of a particle of mass
m is

K =
1

2
m|v⃗|2 =

|p⃗|2

2m
,

where p⃗ is the particle’s momentum. That is, |p⃗| =
√
2mK.

Show that, in Special Relativity,

|p⃗| =
√
K(K + 2m).

Show, further, that this expression reduces to the Newtonian
relation when β ≪ 1.

4. Cosmic rays are very high energy subatomic particles, some of
which have energies as large as several Joules. (How the particles
obtain these energies remains something of an open question.)

(a) A proton of total energy 1.5 J traverses the Milky Way (di-
ameter about 105 lightyears). According to a clock traveling
with the proton, how long would the trip take?

(b) A photon starts the same journey at the same time as the
proton. How far ahead of the proton is the photon when
the latter reaches the other end of the galaxy? [Hint: When
β ≈ 1, 1− β2 ≈ 2(1− β)]

5. Imagine an experiment in which a particle of mass m0 transforms
(“decays”) into to two particles of mass m1 and m2. Before it
decayed, m0 was moving in the laboratory frame at β0 = 3

5
in

the +z direction. After the decay, m1 moves in the +z direction
of the laboratory frame at β1 = 4

5
, while m2 emerges essentially

at rest.
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(a) Show that m1 = 3
4
m0 and m2 = 1

4
m0 if total (particle) mass

and Newtonian momentum are conserved in the laboratory
frame.

(b) Show that m1 = 9
16

m0 and m2 = 5
16

m0 if four-momentum
is conserved in the laboratory frame. What happened to
particle mass?

(c) Show (with Einstein’s velocity transformation equations)
that in m0’s rest-frame, the z components of the three ve-
locities are v′

0z = 0, v′
1z = 5

13
, and v′

2z = −3
5
.

(d) Given the masses found in part (5a) and the transformed ve-
locities found in part (5c), show that Newtonian momentum
is not conserved in m0’s rest-frame.

(e) Show that, with the masses found in part (5b) and the trans-
formed velocities found in part (5c), four-momentum is con-
served in m0’s rest-frame.

6. A proton (mass mp = 0.938 GeV = 938 MeV in natural units),
initially at rest, is “struck” by a particle known as a pion (mass
mπ = 140 MeV) moving in the +x direction with momentum
|p⃗π,i| = 900 ± 40 MeV. The particles scatter in the x-y plane
with the proton moving at an angle (20± 1)◦ relative to the +x
axis with three-momentum magnitude |p⃗p,f | = 1040± 40 MeV,
while the pion (back-)scatters at an angle (−109±1)◦ relative to
the +x axis with three-momentum magnitude |p⃗π,f | = 390± 40
MeV.

(a) What are the components of the scattered particles’ three-
momentum, pπx,f , pπy,f , ppx,f , ppy,f?

(b) Considering uncertainties, are the measured values of the
three-momenta consistent with classical (Newtonian) three-
momentum conservation?

(c) Considering uncertainties, are the measured values of three-
momentum consistent with an elastic scattering event in the
classical (Newtonian) sense: (Newtonian) kinetic energy is
conserved?

(d) Since no additional particles are created by the collision, and
since the identities of the particles were not changed, and
since quantum mechanics tells us that subatomic particles
have no internal energy, the collision must be elastic. Does
treating the momenta relativistically lead to conservation of
energy?

Four-Momentum Conservation

The magnitude of an object’s four-momentum is its mass, m2 = E2−|p⃗|2. This
implies that the mass of a system of particles is not the sum of the particle
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masses, but the magnitude of the total four-momentum of the system, which is
typically larger or smaller than the sum of the masses. Mass is a property of the
system, and only some of it resides in the constituent particles. For example,
the mass of a system at rest (that is, one in which the total momentum is zero)
is the sum of the energies of the constituent particles, not the sum of their
masses. Again, the mass M of a system of two identical particles, each of mass
m, which collide totally inelastically (they stick together) is not 2m before or
after the collision, but M > 2m and unchanged by the collision. Although the
total mass of a system is not the simple sum of its constituent masses, that mass
is frame-independent (all interial frame observers will measure the same total
mass, regardless of their frame).

7. Annihilation occurs when a particle collides with its correspond-
ing antiparticle. Their energies are converted entirely into elec-
tromagnetic energy (photons). The best possible rocket engine
would mix matter with an equal quantity of corresponding an-
timatter and collimate the resulting photons into a tight beam
directed out the rear nozzle of the engine. Imagine such a rocket
at rest (in some inertial frame) in deep space. The total mass of
the rocket at rest, including both matter and antimatter fuels, is
M = 90,000 kg. A firing of the engine results in photons with a
total energy E being emitted to the rear and the rocket moving
forward at |v⃗| = vx = 4

5
. What is the rocket’s mass, m, after the

firing?

8. Because momentum is conserved, matter-antimatter annihila-
tion typically results in the creation of two or more photons. If
only two are created, they must move away from each other in
opposite directions in the center-of-mass frame. In an instance
of annihilation that creates two photons, one photon has energy
E while the other has energy 4E as measured in the laboratory
frame. What is the mass M of the system?

9. An electron with kinetic energy K = me collides with a positron
(antielectron) at rest. The subsequent annihilation produces
two photons, one of which moves perpendicular to the electron’s
original trajectory. The other moves at an angle θ relative to the
electron’s original trajectory. What are the photons’ energies (in
terms of me) and the angle θ?

10. A particle of mass m at rest transforms (“decays”) into two iden-
tical particles, each of which has mass 1

3
m. What is the (rela-

tivistic) kinetic energy of each particle, in terms of m? (Recall
that total three-momentum must be conserved.)

11. The lightest elmentary particle containing a strange quark is
called a kaon. Actually, there are four types of kaon, two neu-
tral versions and two charged versions. The most stable of the
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four is dubbed the long-lived neutral kaon, or K-long, K0
L. It

has a mass M = 498 MeV and a half-life of approximately 36 ns
(nanoseconds, or 10−9 s). About 1/1000 K0

Ls transforms (“de-
cays”) into two identical particles called pions. There are three
types of pion, two charged and one neutral. The neutral pion,
π0, has mass m = 135 MeV. If a long-lived neutral kaon at rest
decays to two neutral pions, what is the magnitude of the pions’
velocity? (Recall, |p⃗|/E = β.) Note that 2 × 135 Mev < 498
MeV. What happened to the mass?

12. A negatively charged pion, π−, has mass mπ = 140 MeV. It
usually transforms (“decays”) into a negatively charged muon,
µ−, which has mass mµ = 106 MeV, and a(n anti-)neutrino,
whose mass is negligible. If a π− at rest transforms in this
manner, what is the magnitude of the muon’s velocity, βµ?

13. Compton Scattering I: The process in which a photon scatters
from a (quasi-free) electron at rest is known as Compton Scat-
tering. Analyze the situation in which a photon of energy E0

reflects exactly in the opposite direction of its original motion
as a result of the scatter. That is, find an expression for the
scattered photon’s energy, E in terms of E0 and me, the mass
of the electron.

14. Compton Scattering II: Find the general expression for Compton
scattering. That is, find the scattered photon’s energy, E, after
it scatters at an angle θ with respect to its original direction,
again in terms of E0 and me.
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