
Week 2: Collisions and Scattering (Graduate)

Nearly everything we know about subatomic objects and their interactions
derives from three indirect techniques:

1. measuring the properties of joined or bound entities (spectroscopy)

2. observing what happens when one entity scatters off another

3. examining natural, spontaneous transformations of entities

Spectroscopy primarily investigates energy spectra, while the examination
of transformations provides information about lifetimes and the interactions
involved in the transformation. We focus here on scattering, which provides
information about internal structure. The principle measurables in scattering
experiments are cross-sections, both partial and total. A cross-section is the
(effective) area for a projectile to interact with a target, a measure of the prob-
ability that some process will occur between a projectile and a target. It can be
thought of as the transverse size of the target.

In all collisions (of which scattering is an example) within isolated systems,
momentum (both linear and angular) and total energy are conserved. In elastic
collisions, kinetic energy (in the system) is also conserved.

1. Consider an elastic collision between two particles. Show that
the collision will not change magnitude of either particle’s ve-
locity when these are measured in the center-of-mass frame.

2. Two particles–one with mass mA moving at |v⃗Ai|, the other with
mass mB moving in the opposite direction (to mA) at |v⃗Bi|–
collide elastically head-on. After the elastic collision, mA moves
at |v⃗Af |, and mB moves at |v⃗Bf |.

(a) Find expressions for |v⃗Af | and |v⃗Bf | in terms of mA, mB,
|v⃗Ai| and |v⃗Bi|.

(b) Consider the case of mB initially at rest. Under what con-
ditions will mA

i. bounce back;

ii. continue in its initial direction?

(c) Again, when v⃗Bi = 0, what happens to |v⃗Af | and |v⃗Bf | when

i. mA ≫ mB;

ii. mA ≪ mB;

iii. mA = mB?

iv. What happens to kinetic energy under these circum-
stances?

[Note that mA always loses kinetic energy in collisions with
a stationary object; faster objects always lose kinetic energy
in collisions with slower objects.]
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In subatomic scattering, no contact is made between particles. Rather, mo-
tions change continuously during the interaction, without loss of (total) energy.
The motions are conic in geometry, rather than linear. The meanings of elastic
and inelastic are then modified, as well. As the result of an inelastic collision,
the target breaks apart or occupies a different energy state (becomes excited).
A totally inelastic collision is one in which the target completely absorbs the
projectile, and then breaks apart or becomes excited. An elastic collision is one
in which the projectile emerges from the interaction with the same kinetic it
had when it entered.

Subatomic physics scattering experiments employ projectiles with velocities,
v/c ≫ 0. Subatomic targets have dimensions of around 10−15 m (1 fm). This
implies that an interaction lasts on the order of only 10−22 s, implying that, at
least in the case of a two-body elastic scatter, the projectile is free both before
and after the interaction.

When a subatomic projectile interacts with a subatomic target, the trajec-
tories of both are altered. This is what is meant by a scattering interaction.
The projectile’s final path differs from its initial path by the polar, or scatter-
ing, angle θ. θ is a function, θ(b), of the impact parameter, b, which is the
distance by which the projectile would have missed the center of the target if
its trajectory hadn’t been deviated. The form of θ(b) depends on the interac-
tion. Generally, with a symmetric beam, a symmetric target, and a symmetric
interaction potential, scattering exhibits no dependence on the azimuthal angle,
ϕ.
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A projectile approaching a target with an impact parameter between b and
b+db emerges with a scattering angle between θ and θ+dθ. More generally, due
to the lack of ϕ-dependence, a projectile passing through the infinitesimal area
dσ scatters into the corresponding solid angle dΩ. The bigger dσ, the bigger
dΩ:

dσ = D(θ)dΩ

The proportionality constant,D(θ) is called the differential cross section (though
it’s not a differential).

Because areas and solid angles are positive,

dσ = |b db dϕ|
dΩ = | sin θ dθ dϕ|

⇒ D(θ) =
dσ

dΩ

=

∣∣∣∣ b

sin θ

(
db

dθ

)∣∣∣∣
When the projectiles are collimated in a beam aimed at a thin “sheet” of

targets, few interactions occur per pass. The number of interactions, Ni, is then
proportional to:

• the number of projectiles (in the beam), Nb;

• the number per unit volume (numerical density) of targets, nt; and

• the thickness of the “sheet”, z,

Ni = σNbntz.

The product Nbntz is sometimes referred to as the luminosity, L, so

Ni = σL,
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and the proportionality constant σ is known as the total cross-section. The
cross-section gives the probability of an interaction given the characteristics of
the beam and target. Its everyday dimension is area, or L2, and its everyday
unit is barn (b): 1 b = 10−28 m2 ⇒∼ 2.6× 10−3 MeV−2 in natural units.

3. If a thin target of thickness z has nt constituents per unit vol-
ume, each of which has a cross-sectional area of σ, what is R,
the ratio of the area covered by the constituents to the total
cross-sectional area of the target?

4. Recall that the number of scattering interactions in a thin target,

Ni = σNbntz,

where Nb is the number of projectiles, nt is the number of target
constituents per unit volume, z is the target thickness, and σ
is the cross-section (the effective scattering area of the target
constituents). The number Nf of particles that make it through
the target unscattered then is

Nf = Nb −Ni.

In a direct total cross section measurement, the number in and
the number out are counted to determine the number scattered,

Ni = Nb −Nf .

For scattering through a not-so-thin target, it is necessary to
integrate over a differential thickness, dz. With each differential
thickness traversed, the number of unscattered particles, N , de-
creases, and so Nf at one thickness becomes Nb at the next, and
so forth. For such an experiment, then, with a not-so-thin tar-
get, the differential number of particles scattered at any given
differential thickness will be dNi = −dN = σNntdz. By in-
tegrating dN from an initial Nb to a final Nf over the entire
thickness from 0 to Z, find an expression for the number of par-
ticles that go unscattered, Nf . In terms of this result and the
total number of projectiles, Nb, find an expression for the total
number scattered, Ni.

In practice, the term “total cross-section” is somewhat ambiguous. It could
mean the sum of cross sections for different types of interactions between beam
and target, such as elastic and inelastic. But it could also mean the integral
over differential cross-sections, dσ

dΩ , at all possible scattering angles:

σ =

∫
dσ

dΩ
dΩ

4



where dΩ = | sin θ dθ dϕ| is, again, the infinitesimal element of the solid angle.
This equals dA

r2 , a differential area a distance r from the target, where a detector
would be set up.

5. Consider scattering from a hard sphere of radius R.

(a) Show that

b = R cos

(
θ

2

)
(b) What is the derivative of b with respect to θ,

db

dθ
?

(c) Calculate
dσ

dΩ

(d) Finally, calculate

σ =

∫∫∫
dσ =

∫∫∫
dσ

dΩ
dΩ

Does the result make sense?

6. Non-relativistic Rutherford scattering.

Central, 1/r interactions–those of the form K
r
–are elastic and

conservative. That is, the projectile’s mechanical energy and
angular momentum are unchanged.
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The Coulomb interaction potential can be written

U(r) = kE

QpQt

r

where kE is the Coulomb constant and Qp (Qt) is the charge of
the projectile (target).

(a) Show that, for the rare case of a head-on collision between
a non-relativistic α-particle (42He++), where Qp = 2e and e
is the charge of the proton, and a nucleus with Z protons,
the distance of closest approach is:

rmin =
2ZkEe2

K0

where K0 is the α-particle’s initial kinetic energy.

(b) The most energetic α-particles Ernest Rutherford and his
colleagues had available for their scattering experiments were
7.7 MeV. Calculate rmin for

i. gold and

ii. silver targets.

A standard problem in classical mechanics texts asks the student
to show that the impact parameter for such an interaction takes
the form:

b =

∣∣∣∣ k

2K0

∣∣∣∣ cot(θ

2

)
where k is the numerator of the central force equation and K0

is, again the projectile’s initial kinetic energy.

For a Coulomb interaction, this becomes

b =

∣∣∣∣kE

QpQt

2K0

∣∣∣∣ cot(θ

2

)
=

∣∣∣∣ZkEe2

K0

∣∣∣∣ cot(θ

2

)
(c) Derive the expression for

dσ

dΩ

(d) Calculate and interpret the total cross section.

7. If 7.7 MeV kinetic energy α-particles scatter at 90◦ relative to
its original direction from a Uranium 238 nuclei (23892U), initially
at rest, find:
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(a) The scattering angles of the α-particle and Uranium nucleus
in the center-of-mass frame.

(b) The recoil scattering angle of the Uranium nucleus in the
lab frame.

(c) The kinetic energies of the scattered α-particle and Uranium
nucleus (in MeV) in the lab frame.

(d) The impact parameter, b.

(e) The differential scattering cross-section at 90◦.

8. How much kinetic energy must an α-particle have to just pene-
trate a silver (10747Ag) nucleus?
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