
Week 4: Interactions Between Charged Particle Radiation and
Matter (Graduate)

Much of the following text is adapted from Cappellaro, P. (2022, October 12).

“Interaction of Radiation with Matter,” at https://phys.libretexts.org/

Bookshelves/Nuclear_and_Particle_Physics/Book%3A_Introduction_to_Applied_

Nuclear_Physics_(Cappellaro)/08%3A_Applications_of_Nuclear_Science_(PDF_

-_1.4MB)/8.01%3A_Interaction_of_Radiation_with_Matter

Recall that the likelihood of interaction is quantified by a cross-section. To
recapitulate, the classical meaning of a cross-section is the area of impact pre-
sented to a projectile. A spherical target whose radius is r has a mechanical
cross-section, in everyday dimensions, of σ = πr2, as that is the area of the
sphere’s circular cross-section. Nuclei have radii r = r0A

1/3, where r0 = 1.2−1.4
fm is an empirically determined constant and A is the mass number (num-
ber of nucleons). If nuclei where classical spheres, and interactions with them
were only mechanical, then the cross-section for nuclear interactions would be
σ = πr20A

2/3 fm2. The interaction cross-section of 137
56Ba, for example, would be

σ ≈ 100 fm2 ≡ 1 barn (1 b = 100 fm2 = 10−28 m2).
Interactions with atomic electrons are much more likely than interactions

with nuclei. While the radii of most nuclei are between 5 and 10 fm (10−15 m),
the radius of an atom is of the order of angstroms (10−10 m), so the atomic
interaction cross-section is at least (104)2 = 108 times larger than the nuclear
interaction cross-section. On the other hand, electrons are very light compared
to the masses of nuclei and of most projectiles, so the effect on the projectiles
of atomic collisions will be less than the effect of nuclei.

Nuclei and atoms are not classical objects, however, nor are interactions
with them mechanical. Rather, interactions with atoms (i.e, atomic electrons)
are coulombic or weak, while interactions with nuclei are coulombic, weak, or
strong. Because it’s charged, the proton scattering cross-section is therefore
larger than the neutron scattering cross-section. Both will be much larger than
the scattering cross-section of a neutrino, which interacts only weakly (the weak
interaction).

Consider a reaction of the form A(x, y)A′ (x + A → A′ + y), where A and
A′ are heavy, stationary nuclei, x is an incoming projectile, and y is an outgoing
particle. The cross-section is measured by the rate of detection of y, Ry, relative
to the flux of projectiles x, Φx and to the number of target nuclei per unit area,
n:

σ =
Ry

Φxn

Experiments are rarely capable of measuring total cross-sections. The finite
sensitivity of detectors limit the detection of outgoing particles to finite regions
of space at polar angle θ and aximuthal angle φ, which, at a certain distance
from the interaction is called the solid angle, dΩ. The rate measurement then
leads to what is referred to as the differential cross-section:
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dσ

dΩ
=

R(θ, φ)

4πΦxn

The total cross-section can then be calculated by integrating over all angles:

σ =

∫
4π

dσ

dΩ
dΩ =

∫ π

0

sin θdθ

∫ 2π

0

dφ
dσ

dΩ

Obviously, measurements at various solid angles are done to check this extrap-
olation. If dσ

dΩ is found to be constant, then σ = 4π dσ
dΩ .

Cross-sections often depend on projectile energy. Such dependence can re-
veal structural details of the target or projectile. With a detector sensitive to
energy and covering the full 4π solid angle, the dependence can be determined
by measuring the cross-section as a function of projectile energy, Eb,

dσ

dEb

or, if the detector can cover only finite regions at a time, the dependence can
be determined by measuring the double differential cross-section

dσ2

dΩdEb

Consider what happens to an alpha-particle interacting with an atomic elec-
tron through the Coulomb interaction. Assuming a non-relativistic, elastic inter-
action in which mometum and kinetic energy are conserved (assume the electron
is initially at rest),

mαvα = mav
′
α +meve

mαv
2
α = mav

′2
α +mev

2
e

where the prime identifies the α-particle’s velocity “after the interaction.”
Then

v′α =
mα −me

mα +me
vα

ve =
2mα

mα +me
vα

And since mα ≫ me, v
′
α ≈ mα

mα+me
vα ≈ vα and ve ≈ 2vα.

The alpha-particle loses kinetic energy to the electron:

∆Kα =
1

2
mev

2
e ≈ 1

2
me(2vα)

2 = 2mev
2
α = 4

me

mα
Kα

⇒ ∆Kα

Kα
≈ me

mα
≪ 1
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Thus a single interaction with an atomic electron hardly reduces an alpha-
particle projectile’s kinetic energy.

All of this implies that

1. Single-electron interactions barely perturb the trajectories of alpha-particle
projectiles through matter.

2. To slow or stop an alpha-particle projectile through single electron colli-
sions requires hundreds of such collisions.

3. Alpha-particles interact with many electrons concurrently, because the
Coulomb interaction has infinite range.

4. The kinetic energy transferred to many of these electrons is sufficent to
ionize atoms, thus making it possible to visualize the trajectories.

The energy lost per unit length is thus a more informative quantity than
energy lost per collision.

Recall that impulse equals the change in momentum.

∆p =

∫ t

0

Fdt

The alpha-particle-electron interaction is a non-relativistic electrostatic in-
teraction. The figure shows the alpha-particle moving in the positive x-direction
with an impact parameter b. Under the assumption the electron is at rest as
the alpha-particle passes, forward and backward affects cancel, and the net (at-
tractive) effect is in the transverse direction: Fy = |F | sin θ, if θ is the angle
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between the electron position and the alpha-particle’s initial direction. Given
that, in this geometry, sin θ = b/r, where r =

√
x2 + b2,

Fy =
2e2

4πε0r2
sin θ =

2e2

4πε0

b

(x2 + b2)3/2

Then the momentum change is (using vα = dx/dt assumed to be constant; also
assumed is that the electron is initially at rest),

∆p = pe =
2e2

4πε0vα

∫ ∞

−∞

b

(x2 + b2)3/2
dx =

2e2

4πε0bvα

x√
x2 + b2

]∞
−∞

=
4e2

4πε0bvα

An electron, whose transverse distance from the line of flight of the alpha-
particle is b, therefore gains energy from the alpha-particle:

∆Kα =
p2e
2me

=
8e4

(4πε0)2meb2v2α

The total energy lost by an alpha-particle traversing a material depends on
the number of such electron collisions. For each infinitesimal thickness dx of
material,

−dE =

∫ Ne

0

∆KαdNe = 2πdx

∫ bmax

bmin

ne∆Kαb db

⇒ −dE

dx
=

16πe4ne

(4πε0)2mev2α
ln

(
bmax

bmin

)
where dNe = ne2π b db dx is the number of electrons in an infinitesimal cylin-
derical shell of radius b, shell thickness db, and length dx; ne = NAZρ/A is
the number density of electrons; NA is Avogadro’s number, Z is the atomic
number of the material, ρ is the density of the material, and A is the mass
number of the material. A is also the mass in grams of one mole of the element
(A = M = NAm, where m is the mass of one atom). The integral is taken over
all physical impact parameters.

It remains, in determining the alpha-particle energy lost per unit traversal
length, to fix bmax and bmin in terms of measurable values. bmax is approx-
imately the atomic radius, which itself can be approximated by the distance
from the nucleus at which the Coulomb potential is equal to a quantity called
the excitation potential Ue ≈ 10Z eV, where Z is the target’s atomic number
(this relationship is found empirically):

Ue =
e2

4πϵ0

1

bmax

⇒ bmax =
e2

10 Z 4πϵ0
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bmin we know is the minimum distance of approach in a head-on elastic col-
lision. Since mα ≫ me, ve ≈ 2vα, Ke ≈ 2mev

2
α corresponding to the maximum

Coulomb potential, Umax ≈ 2e2

4πε0
1

bmin
. Therefore,

bmin =
2e2

4πε0

1

2mev2α

Thus,

bmax

bmin
=

e2

10 Z 4πϵ0

4πε0
2e2

2mev
2
α =

mev
2
α

10Z
≡ Λ

where lnΛ is called the Coulomb logarithm.
The stopping power (average energy loss per unit length) is then

−dE

dx
=

16πe4ne

(4πε0)2mev2α
ln Λ (1)
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This must also equal the average energy lost per collision ∆Kα = 2mev
2
α

times the expected number of collisions:

−dE

dx
= σne∆Kα = 2mev

2
ασne

where σ is the cross-section for a collision with one electron, and ne is the
number density of electrons.

The cross-section for an alpha-particle-electron collision is, then,

σ =
8πe4

(4πε0)2m2
ev

4
α

ln Λ = 2πr2e
4

β4
α

ln Λ

where re = e2

4πε0mec2
≈ 2.8 fm is the classical electron radius, and βα = vα/c =√

2Kα/mαc2.

1. What is the cross-section for scattering between a 4-MeV alpha-
particle and a nitrogen (147N) electron in barns (1 b = 10−28

m2 = 100 fm2)?

2. What is the cross-section for scattering between a 4-MeV alpha-
particle and a lead (20882Pb) electron in barns?

Since the likelihood of energy loss is constant in a given length interval, total
energy loss follows an exponential:

E(x) = E0e
−x/ℓ

where ℓ is the stopping length:
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dE

dx
= −1

ℓ
E0e

−x/ℓ = −1

ℓ
E

⇒ 1

ℓ
= − 1

E

dE

dx
= 4

me

mα
σne

since −dE
dx = σne∆Kα, and ∆Kα = 4me

mα
Kα.

3. What is the stopping length of a 4-MeV alpha-particle in air (air
is nearly 80% nitrogen; assume it is only nitrogen)? How far is
10 stopping lengths in air? [Atmospheric nitrogen is a diatomic
molecule, N2; ρN2 ≈ 0.0012 g cm−3.]

4. What is the stopping length of a 4-MeV alpha-particle in lead?
How far is 10 stopping lengths in lead? [ρPb = 11.356 g cm−3.]

The distance a particle travels in a material before stopping (K = 0) is
referred to as the range, R(K):

R(Kα) =

∫ x(Kα=0)

0

dx = −
∫ Kα

0

dE

dE/dx
(2)

The chart shows the range relative to the mass of the projectile as a function
of relativistic velocity, βγ = p/Mc. The units of the dependent variable, R/M ,
are g/cm2 GeV−1, rather than in some unit of length. The units g/cm2 refers to
the target material, while GeV is the mass of the projectile in natural units. This
allows the table to be used for any projectile and any material of any density
instead of needing an infinite number of graphs for every possible combination.
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To find the range in cm, multiply R/M by the mass of the projectile and divide
by the density of the material. As an example, consider a 700-MeV/c charged
kaon (a kind of elementary particle called a meson, in this case comprised of a
strange quark and an up quark) entering a lead block. The mass of the charged
kaon in natural units is about 494 MeV, so, for a 700-MeV/c charged kaon,
βγ = 700/494 = 1.42. Locating 1.42 on the plot (note, it’s a log-log plot),
one finds R/M for lead is about 400 g/cm2 GeV−1, so R = 400 × .494 ≈ 198
g/cm2. Dividing by the density of lead, ρpb = 11.34 g/cm3, gives R in cm:
R = 198/11.34 ≈ 17 cm.

5. (a) Show that

1

1 − β2
= 1+

β2

1 − β2
= 1+ (βγ)2

and therefore that

γ =

√
1 + (βγ)2

(b) Because
E = γm

(c ≡ 1), show that

β2 = 1−
m2

E2

(c) Argue that the energy lost per unit length traversed is in-
versely proportional to β2

−
dE

dx
∝

1

β2

and, consequently, that the range as a function of energy is

R(E) = −
∫∫∫ E

0

dE′

dE′/dx
∝

∫∫∫ E

0

β2dE′

(d) Show, then, that

R(E) ∝
(E − m)2

E
= m

(γ − 1)2

γ

and, therefore, that

R

m
∝

(
√

1 + (βγ)2 − 1)2√
1 + (βγ)2

that is, that the ratio of the range to the projectile mass is a
function of βγ = p

mc
, where m is the projectile’s mass, and

p is its momentum.
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6. What is the range of a 1-GeV/c proton in a bubble chamber that
is filled with liquid hydrogen at the boiling point, ρH2 = 0.071
g/cm3?

7. It is claimed that a piece of paper can stop alpha-particles from
radioactive decay. These have kinetic energies between 2 and
12 MeV (momenta

√
2mK between 0.1 and 0.3 GeV/c), with a

typical value around 5.5 MeV, or p ≈ 0.2 GeV/c ⇒ βγ ≈ 0.07,
off the scales of the chart. However, R/M for 20 lb (standard
copy) paper (ρ = 0.89 g/cm3, thickness 89 µm) is about 0.0013
g/cm2 GeV−1. What is the range of the typical radioactive decay
alpha-particle in standard copy paper? How far into the paper
(fractional distance) will it go before coming to rest? [mα ≈ 3.7
GeV.]

8. R/M of air (ρair = 0.0012 g/cm3) for 5.5-MeV alpha-particles is
0.0012 g/cm2 GeV−1. What is the range of such alpha-particles
in air?

9. Alpha-particles make up about 10% of the cosmic ray flux. The
momenta of some of these have been measured to be as high as 26
GeV/c. Use the chart to estimate the range in the atmosphere
of these high-momentum alpha-particles.

The Coulomb interaction also mediates the interaction between electron pro-
jectiles and target electrons. The ratio of masses in this case is 1, rather than
8000, and electron projectiles are almost always relativistic, since the electron
mass is only 0.511 MeV. These interactions result in greater energy changes,
larger scattering, and longer stopping lengths than occur in alpha particle in-
teractions. They also must be treated relativistically. The first two effects,
large energy changes and scattering, imply that the projectiles undergo sub-
stantial acceleration, and accelerated, relativistic, charged objects radiate. This
radiation is called bremsstrahlung, from the German for “breaking radiation.”

The stopping power, also due to the Coulomb interaction, is similar to that
of alpha-particles:

−dE

dx
|C =

4πe4ne

(4πε0)2mev2e
[ln Λ′ + radiative corrections]

where, here, Λ′ =
√

Ke

2mev2
e

Ee

I , where I is the excitation energy, the energy

required to raise the atomic electron to a higher energy level.
To this must be added the loss due to bremsstrahlung in order to get the

total stopping power.

− dE

dx

∣∣∣∣
b

≈ Ee

me

Z

1600
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The bremsstrahlung contribution becomes significant when the electron is rela-
tivistic (Ke > me) and when the target atomic number is large.

Bremsstrahlung, in the quantum view, is the production of photons with
energy equal to the change of the electrons’ kinetic energy, hν = ℏω = Ki−Kf .
Each electron can produce many photons in traversing and coming to rest in
matter. The energy spectrum of these photons is continuous with a cutoff of
the electron energy:

Ki = hνmax =
hc

λmin

10. The Stanford Linear Accelerator (SLAC) was the most powerful
linear electron accelerator, reaching energies of 50 GeV. What
is the shortest wavelength photon SLAC could produce, and
therefore the smallest length that could be probed there? [hc ≈
1.24 GeV-fm.]

Bremsstrahlung releases electromagnetic radiation within matter. Recall
from the previous exercise set the various ways electromagnetic radiation in-
teracts in matter. In almost all cases, an electron is emitted, which becomes
another projectile. And so on. This phenomenon is known as cascading or
showering.
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