
Week 9: Nuclear Models (Undergraduate)

Experiments reveal quantized nuclear energy levels, demonstrating that nu-
clei are quantum objects. Nevertheless, no theory of nuclei comparable to that
describing hydrogenic atoms has been formulated. A quantum field theory
(merging quantum mechanics with special relativity) called Quantum Chromo-
dynamics (QCD) describes the strong interaction between quarks well (at least
under certain circumstances), but it has yet to be applied satisfactorily to nuclei,
which are complex, many-body objects compared to quarks, and where much of
the action is at non-relativisitic speeds. Furthermore, while the characteristic
energies of atomic phenomena are on the order of eV, the characteristic energies
of nuclear phenomena are a million times greater, on the order of MeV. Thus,
while atoms are easily excited and combine readily into molecules and crystals,
nuclei excite under only special circumstances. So even quantum mechanics is
unnecessary to understand much (but far from all) of what goes on in nuclei.
As far as a theory of nuclei is concerned, then, there exists a number of models,
some based on QCD, but each describes only a subset of nuclear properties.

One example of such a model, called the liquid drop model, is based on
an analogy with an incompressible drop of liquid whose density is constant,
and whose size and heat of vaporization (analogous to the binding energy) are
proportional to its mass, or, equivalently, the number of its constituents. Its
primary virtue is that it accounts for the binding energy of surface nucleons,
which is smaller than that of interior nucleons.

The first assumption of the model is that each pair of interior nucleons
contributes a characteristic binding energy, ϵb. The next assumption is that the
nucleus is a tightly packed, perfect sphere (which is a pretty good approximation
for large nuclei), so each internal nucleon is in contact with 12 other nucleons–
6 in the same plane, 3 above, and 3 below. Each internal nucleon therefore
contributes 12ϵb to the total binding energy.

A nucleon on the surface has no neighbors above, however, and so is in
contact with just 9 other nuclei, assuming, again, perfect sphericity. Surface
nucleons therefore contribute 9ϵb to the total binding energy.

1. The semi-empirical mass formula:

(a) If Aint is the number of internal nuclons, then the number
of surface nuclons is Asurf = A−Aint, the total number of
nucleons minus the number of internal nucleons. Find an
expression of the nuclear binding energy, Eb, in terms of
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A, Asurf , and ϵb, the binding energy per nucleon pair. (How
many nucleons are there and how much does each contribute
to the total binding energy?)

(b) Recall that the empirical formula for nuclear radii as a func-
tion of mass number is r = r0A

1/3. This suggests that a
nucleon is an incompressible ball of approximate radius r0,
and implies that the average radial distance of the center
of the nuclear surface layer from the center of the nucleus
is R = r − r0 = r0(A

1/3 − 1). The number of surface nu-
cleons Asurf can therefore be approximated by dividing the
volume of the surface layer [the product of the area of the
surface layer (surface area of a sphere) and the thickness of
the surface layer (the diameter of a nucleon)] by the volume
of one nucleon. Find an approximate expression for Asurf in
terms of the mass number, A.

(c) Combine the two expressions to find an approximate ex-
pression for the binding energy in terms of total number of
nucleons, A, and the binding energy per nucleon pair, ϵb.

(d) This result considers only binding due to the strong interac-
tion. Because there are protons, binding is reduced by elec-
trostatic repulsion, which is not limited to nearest-neighbor
interactions (as strong interaction binding is) and every pro-
ton interacts electrostatically with every other proton in the
nucleus. That is, there are 1

2
Z(Z − 1) interactions (each of

the Z protons interacts with the other Z− 1 other protons;
the 1

2
ensures that only one interaction per pair is counted).

Still assuming only large nuclei, so that Z(Z− 1) ≈ Z2, and
averaging over 1/r, explain that the electrostatic contribu-
tion to the binding energy is

Eb ≈ −
Z2ke2

2

(
1

r

)
ave

Explain the negative sign.

(e) Look back at the figure in the week 5 exercise set. Notice
that stable large nuclei tend to have roughly three neutrons
for every two protons, thus N ≈ 3

2
Z and, therefore, A =

N + Z ≈ 5
2
Z or Z ≈ 2

5
A. Moreover, the distance between

proton centers ranges from 2r0 to 2r0A
1/3, so the average

separation between proton centers is roughly one nuclear
radius: ⇒ (1/r)ave ≈ 1/r0A

1/3. Using these approximations,
find an expression for the electrostatic repulsion in terms of
A and r0.

(f) Combine the binding and repulsive expressions to get an
approximation of nuclear binding energy in terms of the
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binding energy per pair, ϵb, the atomic mass, A, and the
charge radius of the hydrogen nucleus, r0. Create a plot of
the binding energy as a function of atomic mass for 150 <
A < 200. Take ϵb = 1.2 MeV, the binding energy of the
deuterium nucleus, 2

1H.

(g) More informative is a plot of Eb/A as a function of A, as
it affords a clearer way to compare the degree of binding
among nuclei. Create such a plot over the same atomic
mass range.

(h) The derived expression is (part of) an important result
from the liquid drop model, known as the semi-empirical
(or Weizsäcker, or Bethe–Weizsäcker) mass formula, which
predicts nuclear masses:

m(Z,N) = Zmp +Nmn −Eb

in natural units (electron binding energy is small and ig-
nored here). Compute the mass of each of the following
atoms using the (partial) semi-empirical mass formula just
derived and compare with measured masses.

i. 56
26Fe

ii. 62
28Ni

iii. 85
37Rb

iv. 107
47Ag

v. 195
78Pt

vi. 197
79Au

The full semi-empirical mass formula contains five terms:
volume energy, surface energy, Coulomb energy, asysmme-
try (or Pauli) energy (due to the Pauli exclusion princi-
ple), and pairing energy (due to spin coupling, pairing is
more stable than unpaired nucleons). The derivation in-
cludes only the first three terms. The asymmetry and pair-
ing terms are the only terms to reflect the quantum nature
of the nucleus. Furthermore, the full formula ignores the in-
ternal nuclear shell structure of the nucleus, which is more
important for small nuclei than for large ones.

(i) The derivative with respect to mass number of the binding
energy indicates whether or not a nucleus is stable against
alpha transformation. Basically, if the difference between
the binding energies per nucleon of the parent and daugh-
ter nuclei is less than the binding energy per nucleon of the
helium-4 nucleus, the parent will transform into the daugh-
ter, emitting an alpha particle. Conversely, if

Eb(
A
ZP) − Eb(

A−4
Z−2D)

4
≈

dEb

dA
>

Eb

A
(42He)
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then the parent is stable against an alpha transformation.
Plot the derivative of the binding energy with respect to
mass number as a function of mass number for 150 < A <
200 and determine the mass number A above which nuclei
are not stable against alpha transformation. That is, find
the value of A on the plot when

dEb

dA
<

Eb

A
(42He).

Eb

A
(42He) was calculated in exercise set 4.

The liquid drop model averages nuclear effects without considering nucleons
individually. It can therefore describe, for example, the average binding energy
per nucleon of many nuclei, but it cannot describe excited energy states or
nuclear magnetic moments. To describe these requires a microscopic model of
individual nucleons.

Experiments found that nuclei in which Z and/or N equals 2, 8, 20, 28,
50, 82, or 126 are both abundant and particularly stable. These numbers have
become known as “magic numbers.” Their existence implies a shell structure,
especially since the last or magic nucleon that “completes a shell” has an espe-
cially high binding energy, and the energy of its first excited state is larger than
the first excited state of a nearby nucleus without any magic numbers. All of
this suggests a nuclear shell model of nuclei, much like the atomic shell model.

The atomic shell model of a nucleus of Z protons first assumes Z electrons,
moving independently in an average nuclear Coulomb field, fill successive en-
ergy levels. Small corrections are then introduced to account for effects due to
electron-electron and electron-nucleus interactions.

A very approximate nuclear shell model assumes nucleons move indepen-
dently in three dimensions under the influence of an average harmonic oscillator
potential,

V =
1

2
kR2 =

1

2
mω2R2

where k is the “spring constant” (indicating the strength of the interaction), m
is the nucleon mass, and ω is the nucleon’s angular velocity. Solved quantum
mechanically, this potential leads to energy levels

E = (2k + ℓ+
3

2
)h̄ω

Here, k is a non-negative integer (including zero) which identifies the order of the
generalized Laguerre polynomial that is the radial part of the solution to the
Schrödinger equation for the three-dimensional harmonic oscillator potential,
and ℓ, the orbital angular momentum variable (|⃗l| =

√
ℓ(ℓ+ 1)h̄), can be any

non-negative integer (including zero). The energy level is then defined to be
N ≡ 2k + ℓ, which is thus also a non-negative integer (including zero). Unlike
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the atomic case, ℓ is not limited by N , but, as can be seen from the definition,
when ℓ is even or zero, so is N , and when ℓ is odd, so is N .

As is the case for atomic states, spectroscopic notation has been standardized
to indicate nuclear orbital angular momentum states:

l: 0 1 2 3 4 5 · · ·
Symbol: s p d f g h · · ·

The energy order of an ℓ-state is given by prefixing the symbol with the
value of n = k + 1, which is the number of nodes in the generalized Laguerre
polynomial. Thus, 1s is the lowest energy zero orbital angular momentum
(ℓ = 0) state, and 1p is the lowest energy ℓ = 1 state, while 2d is the next-to-
lowest energy ℓ = 2 state.

Nucleons have intrinsic angular momentum (spin); they are spin-1/2 objects,
and so there are two states for each orbital angular momentum level, a total
of 4ℓ + 2 states: 2 (ℓ = 0) s states, 6 (ℓ = 1) p states, 10 (ℓ = 2) d states, 14
(ℓ = 3) f states, 28 (ℓ = 4) g states, and so forth, for every energy level n.

The two angular momenta, orbital and spin, combine in a spin-orbit interac-
tion: the energy levels split depending on the total angular momentum, j = ℓ+s
or j = ℓ− s. When ℓ⃗ and s⃗ are parallel, that is, when j = ℓ+ 1

2 , the interaction

energy is positive. When ℓ⃗ and s⃗ are anti-parallel, that is, when j = ℓ− 1
2 , the

interaction energy is negative.

ℓ⃗ · s⃗ = 1

2
[j(j + 1)− ℓ(ℓ+ 1)− s(s+ 1)]h̄2

=

{
ℓ
2 h̄

2 j = ℓ+ 1
2

− ℓ+1
2 h̄2 j = ℓ− 1

2

As a result, orbital momentum states are split into two sets of 2j + 1 states.
Thus, for example, the 10 (ℓ = 2) d states are split into 4 j = 3

2 states (in which
the orbital and spin momenta are anti-parallel) and 6 j = 5

2 states (in which
the orbital and spin momenta are parallel).

Splitting due to spin-orbit interactions is much more pronounced in nuclei
than it is among atomic electron energy levels. Further, in nuclei, the j = ℓ+ 1

2
orbit (in which the orbital and spin momenta are parallel) has lower energy than
the j = ℓ− 1

2 orbit (in which the orbital and spin momenta are anti-parallel), the
opposite of what happens in atoms. Notice, too, that the splitting separation
increases with ℓ.

The orbits occupied by nuclei are then designated by postpending the total
angular momentum j to the nuclear spectroscopic notation as a subscript. For
example, a nucleon in one of the 8 lowest energy ℓ = 3 orbits, that is, with
n = 0, ℓ = 3, j = ℓ+ 1

2 = 7
2 , is designated 1f7/2.

The Pauli exclusion principle, as applied to nucleons–no two of them can
have the same set of energy (n), orbital angular momentum (ℓ), total angu-
lar momentum (j), and z-component of the total angular momentum quantum
numbers (mj)–then yields the energy spectra including the magic numbers.
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As with atoms, states with even orbial angular momentum ℓ are even (pos-
itive) parity states, while odd ℓ yields odd (negative) parity states.

Pairs of protons and of neutrons tend to align so as to produce states of
zero total angular momentum. The result is that even-even nuclei (two protons
and two neutrons per level) have zero total angular momentum. Even-odd or
odd-even nuclei have the total angular momentum of the last (odd) nucleon.
Odd-odd nuclei are complicated.

2. What are the total angular momenta for the following 13
6C states?

(a) The ground state (all protons and neutron levels are filled
through 1p3/2, and the extra neutron is in the 1p1/2 level).

(b) An excited state in which everything is the same as (a)
except that the extra neutron is in the 2s1/2 level.

(c) An excited state in which everything is the same as (a)
except that the extra neutron is in the 1d5/2 level.

(d) An excited state in which all proton levels are filled through
1p3/2, two neutrons are in the 1s1/2 level, three neutrons are
in the 1p3/2 level, and two neutrons are in the 1p1/2 level.

3. Find, by referring to the table, the ground-state total angular
momentum of

(a) 15
8O

(b) 20
10Ne

(c) 39
19K

(d) 41
20Ca
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(e) 80
36Kr

(f) 91
40Zr

4. What possible ground-state angular momentum values could 32
15P

have?
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